

2 CROSSTALK The Journal of Defense Software Engineering December 2006

Twelve Requirements Basics for Project Success
Based on industry experience; guidance from requirements-related
books, articles, and Web sites; and the author’s involvement with
projects, the author provides a set of 12 requirements basics whose
applications will contribute to your project’s success.
by Dr. Ralph R. Young

Interpreting Requirements in a He Said/She Said World
The author shows that when all project stakeholders work from the
perspective that this is a collaborative effort then everyone wins.
by Deb Jacobs

Experiences in Eliciting Security Requirements
This article describes an approach for doing trade-off analysis among
requirements elicitation methods.
by Dr. Nancy R. Mead

Requirements as Enablers for Software Assurance
This article discusses one approach to represent, model, and analyze
certification and accreditation requirements to promote a common
understanding among stakeholders for engineering more reliable software.
by Dr. Seok-Won Lee and Robin A. Gandhi

Finding and Fixing Problems Early:A Perspective-Based
Approach to Requirements and Design Inspections
This article describes the application of perspective-based reading,
a previously successful early life-cycle software inspection approach to
the problem of software security.
by Dr. Jeffrey Carver, Dr. Forrest Shull. and Dr. Ioana Rus

4

9

14

20

25

3
13

19

29
31

D eD e p ap a rr t m e n t st m e n t s

From the Sponsor

Coming Events
Letter to the Editor

SSTC 2007 Ad

2006 Article Index

BackTalk

RRequirequirements ements EngineerEngineeringing

SoftwSoftwaarree EngineerEngineeringing TTechnolechnologogyy

CrossTalk
76 SMXG

CO-SPONSOR

309 SMXG
CO-SPONSOR

402 SMXG
CO-SPONSOR

DHS
CO-SPONSOR

NAVAIR
CO-SPONSOR

PUBLISHER

ASSOCIATE PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

PHONE

E-MAIL

CROSSTALK ONLINE

Kevin Stamey

Randy Hill

Diane Suchan

Joe Jarzombek

Jeff Schwalb

Brent Baxter

Elizabeth Starrett

Kase Johnstun

Chelene Fortier-Lozancich

Nicole Kentta

(801) 775-5555

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the U.S. Air Force
(USAF), the U.S. Department of Homeland Security
(DHS), and the U.S. Navy (USN). USAF co-sponsors:
Oklahoma City-Air Logistics Center (ALC) 76
Software Maintenance Group (SMXG), Ogden-ALC
309 SMXG, and Warner Robins-ALC 402 SMXG.
DHS co-sponsor: National Cyber Security Division of
the Office of Infrastructure Protection. USN co-spon-
sor: Naval Air Systems Command.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 17.

517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Articles
published in CROSSTALK remain the property of the
authors and may be submitted to other publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, or the STSC. All
product names referenced in this issue are trademarks
of their companies.

Coming Events: Please submit conferences, seminars,
symposiums, etc. that are of interest to our readers at
least 90 days before registration. Mail or e-mail
announcements to us.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-0857 or e-mail <stsc.web
master@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

Cover Design by
Kent Bingham

ON THE COVER

Additional art services
provided by Janna Jensen

The CrossTalk staff would like to wish you and yours the very
best this holiday season and the happiest of New Years.

December 2006 www.stsc.hill.af.mil 3

From the Sponsor

In 1994, my organization was striving for Capability Maturity Model® (CMM®) Levels
2 and 3. Driving this activity, the Air Force required us to be Level 3 by 1998 or risk

losing the ability to compete for workload. While working toward this goal, one of our
major challenges was requirements management. Not yet in charge of the 309th, but a
middle manager, I attended a group-level meeting where we discussed our struggles
with requirements. At that meeting, one of our technical program managers stated that
our organization needed to commit to follow a written policy of managing require-

ments. He discussed the reasons our projects experienced requirement changes, such as nebu-
lous requests from the user, inadequate designs, and in-progress customer requests. The effects
of these requirement changes were significant schedule overruns and dissatisfied customers. He
mentioned the traps we got ourselves into like accepting work with inadequate guidance and
being strong-armed by some customers to deliver very minor or unclear modifications, and tak-
ing on high-risk work without proper negotiations or replanning. When this happened, the end
result was the customer and our organization both felt cheated because these requirement
changes were not documented and plans were not adjusted appropriately.

One of the ironies of this situation is that we actually did have processes for proper require-
ments management in place, but we simply did not follow them! We had to make significant cul-
tural changes to adequately implement those practices. Remember, the driving forces behind this
issue were good ones; we wanted to support our customers and provide all that we could for
the warfighter using our products. We had to convince ourselves that in attempting to give
everything to everyone, we were actually hurting both the end-user and ourselves. In addition,
because of our previous do anything approach, we had to re-educate our customers on the need
to better manage requirements effectively; we had to be upfront with them on how requirements
changes could effect the cost, schedule, and quality of our software products. Perhaps you can
see some of your own challenges in our past struggles. The good news is that we did implement
the recommendations of that technical program manager, long ago. Now, as a CMM Integration
(CMMI®) Level 5 organization, we use our requirements management practices to ensure any
requirements changes are approved by both our management and the customer and that our
project plans reflect these changes. The end result is that our customers are intimately involved
in our software projects. While requirements issues will always remain challenging, both we and
our customers are now fully aware of these impacts; the result – we not only have very low
schedule variances, but we have satisfied customers.

The articles in this issue of CrossTalk aim to help the readers with their own require-
ments challenges. In our first article, Twelve Requirements Basics for Project Success, Dr. Ralph Young
shares insights he has gathered from his own experience as well as reading about the experience
of others. Deb Jacobs follows these basics with specific advice on understanding your require-
ments in Interpreting Requirements in a He Said/She Said World. Next, Dr. Nancy Mead gets even
more specific as she discusses different requirements elicitation methods in Experiences in Eliciting
Security Requirements. Our final theme article, Requirements as Enablers for Software Assurance, dis-
cusses work that Dr. Seok-Won Lee and Robin A. Gandhi have done to consolidate software
security requirements from several guidance documents in the Department of Defense in order
to identify the applicable set of security requirements necessary for certification and accredita-
tion. Our supporting article by Dr. Jeffrey Carver, Dr. Forrest Shull, and Dr. Ioana Rus suggests
performing requirements and design inspections from varying perspectives in Finding and Fixing
Problems Early: A Perspective-Based Approach to Requirements and Design Inspections.

While all of the practices of the CMMI, AS9100, and ISO 9000 play a role in our current
success with software delivery, requirements management was one of the earliest practices that
showed visible results. Good requirements engineering requires more than managing existing
requirements; it requires effectively eliciting the requirements, verifying requirements are accu-
rate and useful, managing those requirements, and testing the end-product against the require-
ments. I anticipate the articles in this issue will provide useful insights for both the novice and
expert alike.

Requirements Management Is Required

Randy B. Hill
Co-Sponsor, Ogden Air Logistics Center

4 CROSSTALK The Journal of Defense Software Engineering December 2006

Much has been written about require-
ments, and surely we have experienced

enough to have learned how to do things in
ways that support successful project out-

comes. Yet, many projects encounter require-
ments-related problems, most of which
could have been avoided. Ample guidance is
available to enable successful project man-

agement and to perform effective require-
ments practices [1, 2, 3, 4, 5] that are easy to
apply.

Table 1 provides a set of 12 requirements
basics for project success with supporting
information, suggestions, and recommenda-
tions provided in this article. I encourage you
to consider them thoughtfully in the context
of your project and to determine if some
changes in its approach may be worth con-
sidering. (Of course, if you digest this article
and then decide to make no changes, no
improvement opportunities will result.
Failure to work proactively to continuously
improve is a root cause of a lack of improve-
ment in project success rates [6].) You may
relate to the Requirements Secrets provided
in Table 2. The sad truth is that these are not
really secrets; they are fairly well-known facts
that are well documented in the requirements
literature (books and articles written by acad-
emicians and practitioners concerning
requirements). So, the bottom line is not that we do
not know what to do, it is that we do not do it – a
sad commentary on our willingness and com-
mitment to discipline our efforts on projects.

Related to the importance of require-
ments basics is the need to be agile. How
does one balance increased investment in the
requirements process with the need to be
agile? In my judgment, it is the project’s
approach that makes all the difference. By
using an evolutionary or incremental
approach, and by delivering versions, releases,
and new products, we can be agile. It is not
required that we learn a whole new way of
doing things.

Twelve Requirements Basics for
Project Success
Concerning potential improvements in your
project’s approach, we need to remind our-
selves that each of us is a change agent on
our jobs and on projects. Select an improve-
ment opportunity from the following where
you have influence and show others that you
can be successful.
Basic 1: Provide training for all project
participants concerning the require-
ments processes to be used on the pro-

Twelve Requirements Basics for Project Success
Dr. Ralph R. Young

Northrop Grumman Information Technology Defense Group

The author provides a set of 12 requirements basics; these recommended approaches will contribute to your project’s success.
The requirements basics are based on industry experience; guidance from requirements-related books, articles, and Web sites;
and the author’s involvement with projects. Having an experienced requirements subject matter expert on the project staff can
help the project manager and the project team guide investments that will help.

Requirements Engineering

Half of the features provided in most delivered software are never used once [6].

More than half of the effort on most systems and software projects is wasted [6].

The stated requirements (i.e., the list of requirements provided to the developer by

the customer and users) are never the real requirements.

Eighty percent of requirements errors found in system testing are a result of

incorrect facts about the requirements or omitted requirements [7].

Spending a lot of effort on testing may be misguided; it is better to invest more in

an effective requirements process that results in higher quality products being

provided to test.

Given that a) systems and software development is complex, and b) people (with

all our frailties) are involved, the probability of the development effort becoming

derailed is very high – unless a proactive effort is made to partner for success. See

Requirements Basic 2 (page 5) in this article for a description of what is envisioned.

The documents we produce are fraught with errors; the earlier in the development

effort those errors (defects) are discovered, the less costly it is to fix them. A peer

review process should be implemented to reduce errors. All requirements-related

documents should be inspected.

Project managers should pay added attention to the requirements basics and allot

sufficient funding for requirements-related activities.

It is neither difficult nor expensive to incorporate inspections in your project's

approach [8]; although this technique has been available for a long time, most

projects do not use it.

A defect prevention process is also easy to train, deploy, and implement. It can

save a lot of money and time, but again, most projects do not use it.

Communication on most projects is challenged; a proactive effort to foster good

communications is required [1].

An effective automated requirements tool is required to support requirements

development and requirements management on all but the smallest project.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Table 2: Requirements Secrets

1. Make sure the project staff includes a trained and experienced requirements

manager or requirements analyst.

2. Proactively partner with your customer.

3. Invest in the project’s requirements process.

4. Write a project vision and scope document.

5. Use proven requirements elicitation techniques such as requirements workshops

-and prototyping to evolve the real requirements and to gain buy in from the

stakeholders.

6. Utilize an evolutionary or incremental approach to development, deployment, and

implementation of the capabilities.

7. Use an effective mechanism to control requirements changes and new

8. Use an effective automated requirements tool to maintain information about the

requirements.

9. Ensure that the facts concerning the requirements are accurate and that important

requirements are not omitted. Ascertain the rationale for every requirement (why it

is needed).

10. Conduct inspections of all requirements-related documents. (Inspections are a

more rigorous form of peer review.)

11. Enlist the support and assistance of all members of the project staff in helping to

perform requirements work.

12. Proactively address requirements-related risks.

requirements.

Table 1: Twelve Requirements Basics for Project Success

Twelve Requirements Basics for Project Success

December 2006 www.stsc.hill.af.mil 5

ject. Also, there needs to be a technical leader
who is highly skilled in requirements engi-
neering. The training and experience required
for three levels of a requirements analyst
(RA) are provided in Table 3. See [5] for
more information and insight, including an
extensive set of references to excellent
requirements books and articles by many
good writers. Industry systems engineering
and requirements trainer Robert Halligan
believes that the number one problem in
requirements engineering is that project man-
agers (PMs) fail to require experienced RAs,
and that RAs are not sufficiently trained
and/or experienced to perform their roles
effectively1. PMs can use this skills matrix to
recruit and train RAs; RAs can use it to pur-
sue an ongoing professional development
program to acquire needed expertise.

It is important to distinguish between a
process and the skills of project professionals.
A process may be defined as a set of activi-
ties that results in the accomplishment of a
task or the achievement of an outcome.
Every project uses a requirements process
whether it is defined and documented (writ-
ten down) or not. Some of the advantages of
involving a project’s key leads in defining and
documenting the requirements process for a
project include the following:
• Because they helped create it, the people

involved in defining and documenting
the process acquire a better understand-
ing of it and become more committed to
its successful use.

• The leads for other areas within the pro-
ject become more involved in the require-
ments activities and bring their expertise
and experience to refine the requirements
process.

• Once the process is documented, the
opportunity exits to improve it based on
actual project events.

• The process is likely to be more complete
and useable.

• The process is more likely to be integrat-
ed into other activities and plans on the
project. In other words, by using a collab-
orative approach, project communication
is enhanced.

• Technical performers on projects
become more inclined and willing to use
an agreed-upon and understood require-
ments approach.
When addressing the skills of a require-

ments analyst in Table 3, think of these skills
supporting the project’s requirements process.
The process goals are created to perform
requirements work effectively and successful-
ly; the skills applied by the requirements ana-
lyst facilitate the performance of the require-
ments work. For example, by ensuring that
each requirement meets the criteria for a
good requirement, the RA enables the pro-

ject to avoid a lot of rework, thus making the
requirements process much more effective.
Another example is that by utilizing the joint
team mechanism (a way to do something),
responsibility for the requirements is fixed –
all requirements go through a funnel so that
accountability for them can be maintained.
The joint team mechanism needs to include a
few representatives (between two and 12 or
more, depending on the size of the project)
of both the customer/user and the develop-
er who are empowered to make decisions
and take responsibility and accountability for
the requirements throughout the project’s life
cycle.

Basic 2: Proactively partner with your
customer. In our work, project practitioners
like to use the word partner. It suggests that
we are collaboratively working toward joint
objectives. I am talking about a unique type of
partnering in which an independent outside
facilitator is engaged to orchestrate an
approach in which a set of carefully selected
stakeholders gain commitment to success

through a series of planned partnering work-
shops2. The advantage of this approach is the
evolution of a team that is committed to pro-
ject success – it will not allow the project to
become derailed in spite of the inevitable
problems and interpersonal issues encoun-
tered during the days, weeks, months, and
sometimes years of hard (and often conflict-
ed and frustrating) work. Wiegers provides
related ideas concerning having a product
champion as a specific partnering technique
in [9].

Basic 3: Understand the resources
required to perform requirements
processes effectively and invest in the
project’s requirements process. The
industry average for project investment in its
requirements process is 3 percent of project
costs; data from NASA shows that when 8-
14 percent of project costs are invested in the
system life-cycle requirements process, there
is a much higher probability of achieving
lower costs and improved schedule [10]. The
requirements process used by the project or

Skill

No.

1. Types of requirements. K X X

2. Criteria for a good requirement. K X X

3. Customer/user involvement with requirements (joint team). K X X

4. Identifying real requirements (from the stated requirements). K X X

5. Anticipating and controlling requirements changes. K X X

6. Requirements elicitation. K X X

7. References concerning requirements (books, articles, standards). K X X

8. Requirements attributes. X

9. Requirements baseline. K X X

Training in systems engineering (e.g., life cycles, risk managment). K X

11. Rationale for requirements. K X X

12. Requirements management tools. K X

13. Requirements peer review/inspection. K X X

14. Requirements syntax. K X X

15. Requirements traceability. K X X

16. Requirements verification and validation. K X X

17. Requirements Review Board/Configuration Review Board/

Configuration Control Board.

K X X

18. Developing and using metrics for requirements activities/processes. K X X

19. Requirements prioritization. K X X

20. Technical writing of requirements deliverables (Requirements

Traceability Matrix, Software Requirements Specification,

Interface Requirements Specification).

K X X

21. Develop, implement, and use requirements processes. K X

22. Quality assurance of requirements. K X

23. Requirements allocation (to components, applications, packages). K X

24. Requirements change control and change notification. K X

25. Requirements repository. K X

26. Requirements errors (missing, incorrect, infeasible, out-of-scope). K X

27. Use-case development (with customer/user). K X

28. Requirements specifications. X X

29. Evaluating requirements for risks. X

30. Training the requirements processes. X

31. Requirements Impact Estimation Table. X

Knowledge of = K

Experience with = X

Mid-

Level

Analyst

Senior-

Level

Analyst

Junior-

Level

Analyst
Requirements Analyst's Skills Matrix

X

10. X

XK

Table 3: RAs Skills Matrix

Requirements Engineering

6 CROSSTALK The Journal of Defense Software Engineering December 2006

organization should be 1) developed by the
project’s stakeholders and staff; 2) document-
ed; and 3) continuously improved based on
experience on each project. Measure the
requirements change activity (requirements
volatility), including both new requirements
and changes to requirements, to provide
insight into project performance. Also, plan
for change; this means estimating the amount
of change and when it might occur.

Basic 4: Write a project vision and scope
document. The benefit of this recommen-
dation is to document the vision of the stake-
holders concerning the goals of the project,
and to achieve significant consensus on the
project’s scope (what is included in the pro-
ject and what is excluded – for example, prod-
uct will not support users in Ireland until Vers. 3).
A template for this document is developed by
Karl Wiegers [9] and is represented in [15]. In
our work, we need to be aware of the need to
involve all stakeholders and to gain buy-in
(commitment to the success of the project).
Allowing various stakeholder groups to
review the vision and scope document, com-
ment on it, and then revise it to address their
stakeholder comments is one technique that
can help gain buy-in. One project best prac-
tice is to engage stakeholders throughout the
project – projects that do so are more suc-
cessful than those that do not because com-
munication is improved and expectations are
more realistic [7]. Also, this provides more
opportunities to build interpersonal relation-

ships and even allows customers and users to
help solve the problems that arise.

Basic 5: Use proven requirements elici-
tation techniques such as requirements
workshops and prototypes and other
forms of visual presentations to evolve
the real requirements3 and to gain stake-
holder buy-in [11]. Among more than 40
requirements-gathering techniques, these
two seem to be the most effective. In the
case of the former, various stakeholder
groups will learn more about the perspective
of the other stakeholder groups and will
have a better understanding of the overall
needs to be addressed. Another use of
requirements workshops is to review issues
and make decisions that best serve all stake-
holders. The latter technique is a cost-effec-
tive way to gain a better understanding of
the customer’s and users’ real needs – proto-
types may be designed, developed, imple-
mented, and updated for a fraction of the
cost of a delivered capability. Getting feed-
back on a visual representation is faster and
easier than getting it from text. The important
thing is to evolve the real requirements before starting
other technical work. Experience has shown
that using the stated requirements (the
requirements provided by the customer and
users at the beginning of a development
effort) results in an estimated 45 percent
rework [12].

Basic 6: Utilize an evolutionary or incre-

mental project approach to development,
deployment, and implementation of the
needed capabilities. This is both an oppor-
tunity and a challenge – whenever one
employs a new technique on a real project,
additional risk is assumed. My suggestion is
to ensure that there are people on the project
staff who have previously utilized a new
practice, technique, method, tool, or mecha-
nism. In this way, your project can benefit
from lessons learned previously (provided, of
course, that you pay attention to and are dis-
ciplined to incorporate them). An evolution-
ary or incremental approach allows the pro-
ject to build hunks of delivered code at a
time, and then uses them to learn how and
where to proceed. Use versions, deliveries,
releases, and new products to accommodate
the inevitable requirements changes.

Basic 7: Use an effective mechanism to
control requirements changes and new
requirements. Controlling changes may
mean generating new releases. Most projects
utilize Change Control Boards (CCBs), but
they usually address detailed project activities
such as changes in the code. Use of a higher-
level CCB (for example, the joint team I rec-
ommend to be responsible for the require-
ments) to maintain control of the require-
ments is a good example of applying added
discipline on a project. It is logical (though
most often not done) that requirements
should be prioritized, and that the highest
priority and most difficult requirements be
addressed first. One reason to do this is that
some requirements are unknowable at the
beginning of a development effort; it
requires some development work and related
research effort to discover them. It is critical
to understand that changes to requirements
and new requirements can cause a project to
go out of control, thus creating the need for
a mechanism to control them. I recommend
limiting changes to a maximum of .5 percent
per month (6 percent per year) in the capa-
bility currently being developed in order to
help keep the project under control [13]4.

Basic 8: Use an effective automated
requirements tool to maintain informa-
tion about the requirements. Although
many projects do not follow this practice, in
my judgment, an automated requirements
tool is required for any project except tiny
ones. This is because it is necessary to have
a lot of information concerning each
requirement – its attributes. For example, we
need to know the following:

• The source of the requirement (who
nominated it).

• A unique identifying number for it.
• Its priority (on a scale of one to

three).

Table 4: The Criteria of a Good Requirement

Necessary If the system can meet prioritized real needs without the

Feasible The requirement is doable and can be accomplished within

available cost and schedule.

Correct The facts related to the requirement are accurate and it is

technically and legally possible.

Concise The requirement is stated simply.

Unambiguous The requirement can be interpreted in only one way.

Complete All conditions under which the requirement applies are stated,

and the requirement expresses a whole idea or statement.

Consistent The requirement is not in conflict with other requirements.

Verifiable Implementation of the requirement in the system can be proved.

Traceable

throughout the system (e.g., to the design, code, test, and

documentation).

Allocated The requirement is assigned to a component of the designed

system.

Design

independent

The requirement does not pose a specific implementation

solution.

Non-redundant The requirement is not a duplicate requirement.

Stated using a

standard construct

The requirement is stated as an imperative using the word shall.

Associated with a

unique identifier

Each requirement has a unique identifying number.

Devoid of escape

clauses

Requirements do not use if, when, but, except, unless, and

although and do not include speculative or general terms such as

usually, generally, often, normally, and typically.

Each Individual Requirement Should Be:

requirement, it is not necessary.

The requirement can be traced to its source, and it can be tracked

Twelve Requirements Basics for Project Success

• Its relative cost to implement (low,
medium, high).

• Its relative difficulty to implement
(low, medium, high).

• Each requirement meets the criteria
of a good requirement (the criteria
shown in Table 4 should be met for
each requirement. If they are not, it is
likely that the requirement statement
is not really correct).

• The rationale for the requirement (why
is the requirement needed?) [15]5.

• Change history (how has the state-
ment of the requirement changed
over the system life?).

• Traceability6 (of each requirement to
its source, as well as the design, code,
test, documentation, and training
materials).

• Status (draft, final, approved, pending
approval, disapproved).

• Assigned to (component of the sys-
tem).

Two related needs should be considered.
The first is that the requirements are used by
different people (including customers, users,
and project team members) with different
viewpoints [16]. We need to be able to orga-
nize the requirements to provide different
perspectives, for example, for customers,
users, or testers. The order and the actual
requirements selected for these activities are
dependent on the viewpoint. The second
need is that at any given time, one may need
to see all requirements or only those
changed ones; an automated requirements
tool provides the capability to obtain various
reports that are required to perform good
requirements work.

Basic 9: Avoid rreeqquuiirreemmeennttss eerrrroorrss. A
requirements error is a defect that is dis-
covered in delivered code that is a result of
a requirement statement. Data from
NASA provided by requirements consul-
tant and trainer Ivy Hooks show that 80
percent of the requirements errors that
remain in delivered software are a result of
incorrect facts (49 percent) and omitted
requirements (31 percent) [10]. This is
truly amazing when you think about it –
clearly a key opportunity to improve
requirements work. Making a concerted
effort (investing more in the requirements
process) to avoid these two types of
requirements errors can save money and
time and also improve the quality of deliv-
ered capabilities.

Some of the things that can be done to
address incorrect facts include the follow-
ing:

• Provide stakeholder reviews of
requirements work products.

• Require that an authoritative source

document be specified.
• Require verification of each require-

ment as part of the planning for
testing.

Some of the things that can be done to
address omitted requirements include
the following:
• Elicit requirements from a variety of

stakeholders.
• Conduct requirements workshops

and review the requirements collab-
oratively.

• Conduct formal requirements
reviews.

• Ensure that all high-level require-
ments are addressed and met in the
requirements work products.

Basic 10: Utilize inspections of require-

ments-related documents. Inspections are
not difficult to perform, and their use is cost-
effective; a concise explanation of how to
perform both peer reviews and inspections
and how to install a peer review process on a
project can be found in [8].

Basic 11: Enlist the support and assis-
tance of all members of the project staff
in performing rreeqquuiirreemmeennttss wwoorrkk. It is not
just the requirements manager and/or the
RA who need to be involved in require-
ments-related work on a project. Most mem-
bers of the project staff can help; however,
they need to be made aware of how they can
help and that the PM’s expectation and
request is that they do help. A technique I
have used successfully to accomplish this is
an early project requirements briefing that is made

December 2006 www.stsc.hill.af.mil 7

Risk Approach Suggested Risk Response Strategy

1. Changing

requirements

Mitigation Implement a high-level CCB (Joint Team);

conduct formal requirements reviews such as a

System Requirements Review.

2. Incomplete or

missing

requirements

Mitigation Elicit requirements from a variety of

stakeholders; conduct requirements workshops;

conduct formal requirements reviews; and

ensure that all high-level requirements are

addressed and met in the requirements work

products.

3. Unclear

requirements

Mitigation Perform requirements analysis and rework

existing requirements; provide stakeholder

reviews of requirements work products; require

that an authoritative source be specified; and

require verification of each requirement as part

of the planning for the test program.

4. Invalid

requirements

(requirements that

may not specify

what the customer

really wants)

Mitigation Revisit customer; re-establish needs; redevelop

requirements; and delete requirements that do

not have a good rationale or do not meet the

criteria of a good requirement.

5. Infeasible

requirements

(requirements

technically difficult

to implement)

Mitigation Revisit customer, re-establish needs, redevelop

requirements; and delete requirements that do

not have a good rationale or do not meet the

criteria of a good requirement.

6. State-of-the-art

requirements

(something never

done before, or

your company has

never done)

Mitigation Obtain input from similar projects/companies;

perform detailed requirements analysis and find

someone who has done it before and obtain

advice concerning lessons that were learned

from doing something new or in a new way.

7. Inadequate

interface definition

Mitigation Establish interface management methods

(Interface Requirements Documents/Interface

Control Documents) and implement

responsibility assignment matrices.

8. Non-verifiable

requirements

Mitigation Involve testers in early requirements

to establish feasible compliance methods.

9. Incorrectly

allocated

requirements

Mitigation Conduct formal requirements reviews and

implement a formal requirements management

tool.

10. Non-traceable

requirements

Mitigation Understand traceability more thoroughly and

perform detailed requirements analysis to

determine potential sources or to eliminate

development activities; and reword requirements

non-traceable requirements.

Table 5: Suggested Requirements-Related Risk Response Strategies

to the entire project staff. Participants in
the briefing can be invited to suggest how
they can help with the requirements work
with the objective of optimizing the
efforts of all project members. A related
need is to develop a strong sense of team-
work throughout the project. In my expe-
rience, an empowered and committed
team can accomplish most anything it sets
out to do.

Basic 12: Work proactively to address
requirements-related risks. As is well
known to practitioners, most projects do
not address the risks they face with the
discipline that they should. There are
many excellent books concerning how to
do this. A good starting point is Chapter
11 of [15]. Another source is [9], which
provides a chapter on software require-
ments and risk management. Table 5 (see
page 7) describes typical requirements-
related risk response strategies that should
be helpful.

Summary
From my experience in working with pro-
jects of all sizes, there is a lot of benefit to
investing in and continuously improving
the project’s requirements process. There
really is no good excuse for the extent of
rework that is typically required on pro-
jects, or for the failure of projects, or even
delivery of reduced functionality and/or
over budget or beyond schedule issues. It
is within our power to do better. Use of
one or more of the requirements basics
discussed here is likely to be helpful.
Consider discussing the contents of this
article at a project staff meeting with the
objective of identifying the top three ideas,
suggestions, or recommendations to
improve the requirements practices of
your project.u

References
1. Whitten, Neal. Neal Whitten’s No-

Nonsense Advice for Successful Pro-
jects. Vienna, VA: Management Con-
cepts, 2005.

2. Young, Ralph R. Effective Require-
ments Practices. Boston: Addison-
Wesley, 2001.

3. Alexander, Ian F., and Richard Stevens.
Writing Better Requirements. London:
Addison-Wesley, 2002.

4. Gottesdiener, Ellen. Requirements By
Collaboration. Reading, MA: Addison-
Wesley, 2002.

5. Young, Ralph R. The Requirements
Engineering Handbook. Boston: Artech
House, 2004.

6. The Standish Group. “What Are Your
Requirements?” West Yarmouth, MA:

The Standish Group International, Inc.,
2003.

7. Stevens, Richard, Peter Brook, Ken
Jackson, and Stuart Arnold. Systems
Engineering: Coping with Complexity.
London: Pearson Education Limited,
1998.

8. Wiegers, Karl E. Peer Reviews in
Software: A Practical Guide. Boston:
Addison-Wesley, 2002.

9. Wiegers, Karl E. Software Require-
ments. 2nd ed. Redmond, WA: Micro-
soft Press, 2003 <www.processimpact.
com/goodies.shtml>.

10. Hooks, Ivy F., and Kristin A. Farry.
Customer-Centered Products: Creating
Successful Products through Smart
Requirements Management. New York:
The American Management Associa-
tion, 2001.

11. Young, Ralph R. “Recommended
Requirements Gathering Practices.”
CrossTalk Apr. 2002 <www.stsc.
hill.af.mil/crosstalk/2002/04>.

12. Leffingwell, Dean. “Calculating Your
Return on Investment from More
Effective Requirements Management.”
Rational Corporation, 1997 <www.
128.ibm.com/developerworks/ratio
nal/library/347.html>.

13. Jones, Capers. Estimating Software
Costs. New York: McGraw Hill, 1998.

14. Whitten, Neal. “Meet Minimum Re-
quirements: Anything More Is Too
Much.” PM Network. Sept. 1998.

15. Young, Ralph R. “Project Require-
ments: A Guide to Best Practices.”
Vienna, VA: Management Concepts,
2006.

16. Sommerville, I., P. Sawyer, and S. Viller.
“Viewpoints for Requirements Elicita-
tion: A Practical Approach.” Proc. of
the 1998 International Conference on
Requirements Engineering (ICRE ’98),
6-10 Apr. 1998, Colorado Springs.
IEEE Computer Society (1998): 74-81
<http://csdl2.computer.org/pers
agen/DLAbsToc.jsp?resourcePath=/dl
/proceedings/&toc=comp/proceed
ings/ ic re/1998/8356/00/8356
toc.xml>.

Notes
1. Personal e-mail to the author,

September 2, 2006.
2. Request a briefing available on this topic

from facilitator Charles Markert <mark
ert@facilitationcenter.com>. For addi-
tional information, see <www.mid-at
lanticfacilitators.net/>.

3. The term real requirements may be new to
you. I refer to the requirements that are
provided to developers by customers and
users as the stated requirements. Industry

experience has shown us that the stated
requirements are never the real require-
ments for an application. Customers
and users need help from the develop-
ment team to evolve the real require-
ments from the stated requirements.
This is one reason project managers
should invest more time and money in
the requirements process. It is also an
area where projects can leverage the
experience and expertise of qualified
requirements analysts.

4. Capers Jones has reported that the U.S.
average for requirements changes is
about 2 percent per month during the
design and coding phases, but can be
much higher [12, p. 429]. Two percent
per month equates to 24 percent per
year; this is too much change in my
experience to enable the project to
remain in control.

5. See Neal Whitten’s insightful and help-
ful article, “Meet Minimum Require-
ments: Anything More Is Too Much”
[14] to gain an understanding of why it
is in everybody’s best interests to figure
out the minimum set of requirements
that will meet real needs. This article is
reprinted with the author’s permission
as an appendix in [145].

6. The best guidance available on the
important topic of traceability is James
D. Palmer’s article, “Traceability,” origi-
nally published in Software Requirements
Engineering, R.H. Thayer and M.
Dorfman Eds. 1997, pp. 364-374. This
article is reprinted with the author’s per-
mission as an appendix in [15].

Requirements Engineering

8 CROSSTALK The Journal of Defense Software Engineering December 2006

About the Author

Ralph R. Young, Ph.D.,
teaches courses concern-
ing requirements and
process improvement
and facilitates workshops
to strengthen the use of

practices and techniques on projects. He
is the author of Effective Requirements
Practices, The Requirements Engineering
Handbook, Project Requirements: A Guide to
Best Practices, and co-authored Performance
Based Earned Value.

Northrop Grumman Information
Technology Defense Group
7575 Colshire DR
McLean,VA 22102
Phone: (703) 556-1030
Fax: (703) 556-2802
E-mail: ralph.young@ngc.com

December 2006 www.stsc.hill.af.mil 9

Burnt popcorn permeated the room as
Mary walked down to Bob’s cubicle.

She couldn’t believe that someone had
burnt popcorn again; she was going to
have to put instructions on the microwave
since this was the third time this week
someone had left it in too long. But right
now she was too frustrated to even think
about the popcorn for long. As she came
to Bob’s cubicle, she was starting to feel a
little better about the calculations on the
look-up report for the MDPSR database
she was working on.

“Bob, do you have a minute?” she
asked as she saw him huddled over his
computer.

“Sure Mary, just a sec, while I finish my
thought here.” he replied.

As Mary sat down and waited she took
another look at the words in the require-
ments matrix and drawings she had
brought with her to show Bob. I remember
they talked a lot about what they wanted to see, but
I’m not sure they decided anything, she thought.
Looking at the requirement again it just
wasn’t specific enough. It left a lot open to
interpretation. What was it they said about…?

Bob surprised Mary a few minutes
later when he said, “So Mary, what’s up?”
Mary jumped but recovered quickly. “Bob,
I’m working on the look-up report and
I’m not sure I understand what fields are
used in this calculation.”

Bob looked at the requirements matrix
and Mary’s notes and drawings.

“I remember this,” said Bob. “They
threw out several things at the require-
ments meeting a few months ago, but I
can’t remember what they finally decided
or if they finally decided what they want-
ed.”

“So what do you think I should do?”
Mary asked. “I talked to Mike when I saw
him in the hallway the other day and he
told me which ones he used. Since he’s
one of the users, don’t you think that
should be right?”

“I don’t know Mary, maybe we should
ask Don,” Bob suggested.

“Last time I asked him about a require-
ment he treated me like I was stupid or

something. Besides I’m not sure we have
time – this thing is scheduled for testing in
28 days, and I still have a lot to do,” Mary
exclaimed, exasperated.

“I know. He did that to me too and
with this thing due soon we don’t want to
get burned again for not making the
schedule. I can’t take much more overtime
– I’m getting burned out.” Bob replied,
“By the way, who burnt the popcorn this
time?”

“I don’t know, but it makes you never
want to eat popcorn again in your life.”
Mary said as she walked away to finish her
look-up report. She wondered if she was
doing the right thing or if she should get
clarification, but the time crunch brought
her back to reality and she decided to fol-
low the user’s advice.

One month later at the meeting fol-
lowing testing, Mary knew that was the
wrong decision. “Where did these figures
come from?” Don ranted, as he went over
the reports generated from the tests. “We
told you what fields to use at the require-
ments meeting last April. In fact, there are
several of these reports that aren’t right.
What’s going on here?”

Mary grimaced, as Jack, the Project
Manager (PM) – who had been named PM

since he was good at placating people like
Don – got up and started to explain that
they had gone by the documented require-
ments. Before Jack could get two words
out of his mouth, Don stood up and
threw the reports on the table.

“This will all have to be fixed. I want
to go to retest in one week.”

Sound familiar? Who is at fault here:
the contractor receiving the requirements
or the customer who gave the require-
ments? The answer is both. This scene
may sound familiar to you since it happens
time and again on project after project.

Regardless of which report you read,
the battle cry is loud and clear: Projects are
failing more often than they succeed. Something
must be done. But what? That is the million-
dollar question. Even the oft-quoted
Standish Report still shows that successful
projects that meet schedule, budget, and
requirements still only hover around the
30 percent mark, as shown in Figure 1.

A Great Start
A great start for fixing this long-standing
software development crisis is with
requirements. We must fully understand
what we are developing before we can
develop the right product for our cus-

Interpreting Requirements in a He Said/She Said World

Interpreting what someone else really wants can be one of the most difficult elements of software development – at times it
can be like talking to your teenager. That includes both the customer and the contractor. We must each walk in the other’s
shoes to see it from the other’s vantage point. Requirements interpretation must be a two-way street with collaboration and
communication the keys to success.

Deb Jacobs
Software Engineering Services

0

20

40

60

80

100

1994 1996 1998 2000 2002 2004

Percentage of Successful Projects

Source: The Standish Report [1, 2, 3, 4, 5]

Figure 1: Standish Report Summary

Requirements Engineering

tomers. Readers will probably shake their
head and say of course we do, but the statis-
tics show that even though this seems to
be a no brainer, we still are not doing it.
This article will discuss some tried and
true as well as some innovative methods
that can help contractors and their cus-
tomers through the quagmire of require-
ments elicitation.

There are many great sources for
requirements engineering; I have provided
some of the best sources at the end of
this article. Based on my more than 25
years of experience in various software
development and project management
roles, I have found one of the best sources
to be the Capability Maturity Model
IntegrationSM (CMMI®) [6], developed by
the Software Engineering Institute
(SEISM). There are two process areas that
are valuable resources for any project in
defining and managing requirements:
Requirements Development, and Require-
ments Management. Figure 2 illustrates
these key process areas.

Eliciting Requirements
There are a myriad of methods for elicit-
ing requirements. The key is interpreting
the requirements correctly. The amount of
time spent on eliciting requirements will
depend on many factors such as team
experience, management, level at which
requirements have been pre-defined, and
life-cycle methodology selected for devel-
opment. The rule-of-thumb I have always
used is approximately 15 percent of pro-
ject time should be spent on identifying,

defining, and clarifying requirements
throughout the development life cycle
with the majority of time spent up front.
Some of the more popular methods for
obtaining requirements include the fol-
lowing:
• Analysis of existing documentation.
• Statement of work/task definition.
• Interviews (structured and unstruc-

tured).
• Group brainstorming.
• Observation.
• Questionnaires and/or surveys.
• Prototyping.
• Modeling (enterprise, data, behavior,

domain, non-functional).
• Rapid Application Development.
• Joint Application Development.
• Cognitive (examining usability).

A lot of resources have defined what a
good requirement should look like. Most
agree that it should be complete, consis-
tent, unambiguous, verifiable/measurable,
necessary, concise, implementation-free,
and attainable. The additional reading at
the end of this article provides great guid-
ance for developing a good requirement.

There are some other methods that
have been used successfully that are not
quite as obvious as defining good require-
ments. These are the ones that this article
will concentrate on.

Perspective Factor
Interpreting requirements correctly is the
most prevalent problem in requirements
engineering. We all look at things differ-
ently based on our background, education,
experience, and simply from where we are
standing at the moment. For requirements
development, it will also depend on our
responsibilities on the project.

MC Escher is famous for his optical
illusion art (was and is well known for his
impossible structures). A favorite is called
Relativity that simply tells us that what you
see is relative to where you are standing.
When dealing with others realities, we
have to see things from others’ perspec-
tives.

Each stakeholder is going to see some-
thing different. The customer or require-
ments giver sees the final products based
on their outlook of either the manual
methods used or a legacy system they have
been using. Many times it is hard to artic-
ulate either in writing or verbally what they
want even when they know exactly what
they want. The contractor or requirements
receiver sees the same thing based on their
experiences in development, using like
systems, etc. By looking at things from
each others vantage point, we are able to
better understand what needs to be devel-
oped. It is everyone’s responsibility.

Proactive Requirements
Management
Planning requirements management activ-
ities, open communications, and proactive
resolution of even a simple not sure is cru-
cial on a project in order to avoid night-
mare scenarios later on. There is enough
to panic about when developing a system
without the added stress of misunder-
standings or misconceptions.

Planning the requirements develop-
ment activities can alleviate much of the
typical Keystone Kops scenarios. Lack of
planning has been oft-quoted as a top
cause for failure in survey after survey.
Lewis Carroll in Alice in Wonderland said,

It sounded an excellent plan, no
doubt, and very neatly and simply
arranged. The only difficulty was,
she had not the smallest idea how
to set about it. [8]

More important than the planning
process is ensuring the plan does not
become shelfware: it must be useable and
thus used by the project team. The level of
planning will depend upon the size and
scope of the project. Regardless of the
project, a key word in planning is flexibility.
Even the most closely planned activities
can be unsuccessful without flexibility to
accommodate unforeseen events and
changing priorities.

Working closely with the customer
throughout the development process can
make the difference between success and
failure. The key is for the customer to help
ensure that the system’s desired function-

10 CROSSTALK The Journal of Defense Software Engineering December 2006

CMMI Requirements Development

CMMI

Requirements Management

Develop Customer

Requirements

• Elicit Needs
• Develop the Customer
 Requirements

Customer

Requirements

Develop Product

Requirements

• Establish Product and
 Product-Component
 Requirements

•Allocate Product-
 Component Requirements

• Identity Interface
 Requirements

Analyze and Validate

Requirements

• Establish Operational
 Concepts and Scenarios

• Establish a Definition of
 Required Functionality
 •Analyze Requirements

•Analyze Requirements to
Achieve Balance

• Validate Requirements
 With Comprehensive
 Methods

Validated

Requirements

Manage
Requirements

• Obtain an Understanding
 of Requirements.

• Obtain Commitment to
 Requirements.

• Manage Requirements
 Changes.

T
• Maintain Bidirectional

raceability of
 Requirements.

• Identify Inconsistencies
 Between Product Work
 and Requirements.

Requirements

Requirements

Tracking System

or Traceability
Matrix

Product,

Product-

Component,

and Interface

Requirements

Figure 2: Requirements Development and Requirements Management Process Areas [7]

® Capability Maturity Model and CMMI are registered in
the U.S. Patent and Trademark Office by Carnegie
Mellon University.

SM SEI is a service mark of Carnegie Mellon University.

Interpreting Requirements in a He Said/She Said World

December 2006 www.stsc.hill.af.mil 11

ality is realized and the developer fully
understands what the system’s desired
functionality is from the customer’s point
of view. The ever-growing-in-popularity
Agile methodologies uses active stakeholder
participation and on-site customer to describe
this customer/contractor collaboration.

Who’s Who
A graphical depiction for defining and
keeping track of who’s who provides a
great tool for both the customer and the
contractor. This ensures that there are no
misunderstandings or misconceptions.
For larger projects with numerous stake-
holders, including subcontractors, this
tool is essential in providing a means of
averting potential issues resulting from
wrong requirements.

So who is the best person to act as the
decision maker? The customer (adminis-
trative or technical)? The contractor? The
subcontractor? Or someone else? Typi-
cally, it is a combination of the adminis-
trative customer and the technical cus-
tomer representatives. However, it
depends upon the contract. Many times
the contractor has the pertinent skills and
knowledge to make the appropriate deci-
sions concerning requirements so they
may be tasked as the decision maker.
Ultimately, the customer usually has the
largest stake in the outcome of the project
since they have to live with the results.
They should be involved with the require-
ments decisions at all times.

In short, the key is to know the who,
what, when, where, why, and how. There
should be a clear understanding of who
are the decision makers for requirements.
The who’s who diagrams should be
approved by the appropriate managers
and distributed to the entire team. If a
project has a communications plan, this is
a good place to include these diagrams
and should include who can accomplish
the following:
• Add a new requirement.
• Change existing requirements.
• Clarify a requirement.
• Accept changes to requirements.
• Direct the various teams.
• Determine if a requirement has or has

not been met.
• Accept requirements as met or not

met.
Distribution lists for the various project
elements should be developed to ensure
all stakeholders are included as needed.

Win-Win Stakeholder
Negotiations
A process should be in place that is fair to

both the customer and the contractor,
thus win-win. The customer is responsible
for ensuring they have conveyed the cor-
rect requirements, and the contractor is
responsible for ensuring they understand
the requirements correctly, and an
approved requirements method can be
developed. Some of the most effective
methods of documenting approval and
tracking requirements are the use of
requirements matrices and requirements
databases depending upon the size of the
effort. Whichever method is used, the key
is approved.

An effective method of providing a
win-win is through the use of win-win
stakeholder negotiations. These negotia-
tions can be in the form of meetings that
provide a forum for open discussions

between stakeholders at the worker-bee
level (the engineers developing the sys-
tems and the ultimate users of the sys-
tem). Requirements can be negotiated
based on technology, environment, time,
effort, and budget constraints. They pro-
vide a way of fully understanding the con-
tractual requirements and discussing
derived requirements. Someone with the
power to make decisions on the project
must be present in order to make the
meetings effective.

Sometimes a trained negotiator can
help alleviate some of the pain involved in
these meetings. Role-playing is a great
method used where the customer and
contractor trade places and look at things
from each others perspective. The goal is
for everyone to walk away satisfied, or at
least break-even.

Many times, either the contractor or
the customer will have tasks that need to
be accomplished as part of the require-
ments elicitation; the negotiations meet-
ings can include discussion and negotia-
tion of these commitments for both the
customer and the contractor. To make
adherence to the agreed-upon commit-
ments more effective, some organizations
use what they call a stakeholder’s contract
that puts these particular commitments in
writing.

Test Early,Test Often
Test early, test often. This should be the
mantra for all projects. If we think of a
project in terms of how we can test it, we
will more readily be able to see what needs
to be developed. This should again be a
collaborative effort between the require-
ments giver and receiver.

On one project in which I was staff
engineer, I was responsible for a replan-
ning effort since the project was doomed
to go over both schedule and budget.
After much discussion, we decided to try
an incremental approach where require-
ments were chunked into categories and the
system was built incrementally. Starting
with the system communications as the
foundation, we tested this component and
then built requirements into a solid frame-
work. This allowed us to avoid the inher-
ent problem of finding bugs when a large
system is fully integrated. By working
closely with the client, it also avoided fin-
ger-pointing at the end of the project
since they were involved throughout the
testing and the requirements were fully
fleshed out. This project finished within
the original schedule and budget.

If an incremental approach does not
work or the project is not large enough for
that level of testing, early development of
test cases, use cases, or test scenarios can
enable the developer to more easily visual-
ize the finished product. It provides a
chance to work with the customer to
ensure a full understanding of the require-
ments. It also weeds out or helps clarify
requirements that are not testable or in
some way measurable.

Another proven method of fleshing
out requirements is prototyping to simu-
late the final product or a complex com-
ponent of the final product. There are
many benefits to be gleaned from proto-
typing, including exposure of misunder-
standings between customers and devel-
opers, detection of missing functionality
or services, identification of confusing
functionality or services, development of
a simplified working system early in devel-
opment cycle for the user, incremental
delivery of a system starting with the pro-
totype, identification of risks, and a basis
for derivation of requirements.

If a project can afford the extra time
and expense of prototyping or there are
safety or security issues involved, proto-
typing is key to building a successful sys-
tem. Depending upon the system under
development, the time and expense of
doing a prototype may actually cost less in
time and ultimately be less expensive.
There are many factors that must be

“A process should
be in place that is

fair to both the customer
and the contractor,

thus win-win.”

Requirements Engineering

weighed in making a decision to proto-
type. Sometimes a simple paper prototype
makes the difference between day and
night.

The Value of Pictures
Conceptual modeling provides a great
method for visualizing the final system.
Fred R. Barnard said, “One picture is
worth a thousand words [9].” Use paper,
use a whiteboard, or use graphics applica-
tions, but by all means draw pictures.
Draw as many pictures as it takes to fully
understand and agree on each require-
ment. Some of the most successful pro-
jects are accomplished by spending as
much time in front of the white board as
in front of the computer. This is by far the
easiest and best method for interpreting
and agreeing upon requirements. It can
also be effective in weeding out require-
ments not considered, identifying poten-
tial or real bottlenecks, or deriving require-
ments. Some effective popular methods of
graphically depicting requirements include
the following:
• Data-flow diagrams.
• Flowcharting.
• Cross-functional flowchart (charted by

responsibility).
• Information mapping.
• Entity relationship diagram.
• Unified Modeling Language (UML)

use case.
• UML collaboration/communications

diagram.
• UML state chart diagram.
• UML sequence diagram.
• UML activity chart.
• UML component diagram.
• UML deployment diagram.
• Structured analysis and structured

design.
• Structured analysis and design tech-

nique.
• Integrated computer-aided manufac-

turing definition family of methods.
• State transition diagram.
• Object role modeling.
• Decision trees.
• Role activity diagrams.
• Petri net.

There are numerous methods for help-
ing developers and customers to visualize
the final product. The use of several of
these diagrams is optimal when interpret-
ing requirements in order to fully under-
stand and communicate. They can be used
with various levels of detail depending
upon what the person is trying to convey.
I have found that by keeping each dia-
gram/picture as simple as possible, the
greatest value can be derived so remember
the KISS principle: Keep it short and sim-

ple. The level of detail in the initial dia-
grams should be flexible enough to leave
room for analysis and optimization. There
are a number of tools available to make
using these methods easier.

Drilling Down/Chunking
Drilling down and chunking are ways of
examining each requirement for full
understanding. Drill down can be used to
decompose requirements by starting at the
basic high-level requirement and drilling
down to the details of each requirement.
After the high-level requirements are fully
understood and agreed upon, the develop-
ment team should move to fine-tune the
details. Drill down should be iterative; as
more details of higher-level requirements
are understood, they are drilled down to
lower levels for a complete understanding
of what the customer is looking for. This
is where the derived and implied require-
ments are defined. This should be accom-
plished until all requirements are fully
fleshed out.

Drill down ensures that time and
money is not wasted on detailing require-
ments that are misunderstood from the
beginning. The decomposition must be
approved in order to move forward to the
next iteration, thus avoiding further mis-
understandings. This step can be used to
associate each requirement with a particu-
lar subsystem or component. It can also
include verification/testing strategy and
method generation.

Chunking is a method used to orga-
nize and arrange information so that it is
easier to read, understand, access, and
retrieve. It is a method of subdividing and
organizing into short chunks of informa-
tion in a uniform format. The simpler the
better is key for certain types of informa-
tion, with clutter being the villain. The
premise is to group information and pro-
vide white space to break information into
manageable components. This is some-
times called visual chunking and results in
greater readability and accessibility.
Chunking can be used effectively in
understanding requirements especially if
they are obtained from a statement of
work or other typical task definition docu-
ment. When you look at elements in logi-
cal groupings, you are able to remember
and understand them much easier. There
are things to avoid with chunking, includ-
ing over-generalization and being over-
specific. Keep it simple, but do not take
away from content and run the risk of not
being fully understood.

Balancing Act
One of the most difficult things encoun-

tered during requirements definition is
balancing the customers and, ultimately,
the user’s needs versus their expectations.
The needs are the identified require-
ments, which many times differ from
their actual expectations, which are the
unidentified requirements. Sometimes
understanding their expectations can
drive the understanding of the needs for
defined requirements and gain insight
into the real requirements. This can be
accomplished by spending some time
with the users, but with the caution that
the designated decision maker is the one
with the authority to add, change, delete,
or alter the defined requirements in any
way. It is easy for developers to get
caught up in the nice to have’s or this is the
way I do it from users.

The second – and perhaps more
important – balancing act is typically
called managing requirements creep. Getting
feedback from the customer is key, but at
the same time a close eye must be kept on
out-of-scope requirements that drive the
project: schedule, cost, and risk. Flexibility
is important to ensure that all the cus-
tomer’s requirements are met, which is the
ultimate goal of any development project.
In fact, for the Agile programmer, chang-
ing requirements are a way of life; they are
expected and embraced. But the key is to
balance these changing requirements with
feasibility, applicability, and impactability
to the system under development.

Iterative Requirements
Interpretation
Interpreting requirements means that each
requirement must be examined to ensure a
full understanding. This is an iterative
process of meetings for interviewing or
brainstorming until all of the require-
ments have been fleshed out and beyond.
Where did meetings get such a bad repu-
tation? Used properly, meetings are a great
tool for ensuring everyone is dancing to
the same beat.

Many of the Agile methodologies use
meetings on a regular basis. These meet-
ings are called stand-ups or scrums. They
are short, quick meetings first thing every
morning to briefly discuss what actions
are in progress. These meetings go a long
way in ensuring no misunderstandings or
misconceptions throughout the develop-
ment process. The key is to make the
meetings applicable and quick. They must
include the appropriate project stake-
holders. If side issues need to be
resolved, this should be done in a sepa-
rate meeting with only the necessary
stakeholders. Remember that there are

12 CROSSTALK The Journal of Defense Software Engineering December 2006

Interpreting Requirements in a He Said/She Said World

December 2006 www.stsc.hill.af.mil 13

designated decision makers who must be
kept involved or at least informed at each
step, especially when requirements
change.

Summary
By always looking at things from each
others vantage point, the software devel-
opment world can start to overcome
some of the nightmare scenarios so typi-
cal of software development projects.
Most of these nightmares are directly
attributable to requirements and the
understanding of each requirement. By
using some of the techniques discussed
in this article, the typical Mary and Bob
scenario can be avoided. Heed the battle
cry: We can make projects more success-
ful if we all work together. When all pro-
ject stakeholders work from the perspec-
tive that this is a collaborative effort, then
everyone wins.u

References
1. The Standish Group. “CHAOS: A

Recipe For Success, 1998.” Standish
Group International, 1999.

2. The Standish Group. “CHAOS Re-
ports.” Standish Group International
<www.standishgroup.com>.

3. The Standish Group. “The Standish
Group Report – CHAOS 1994.”
Standish Group International, 1995.

4. The Standish Group. “What Are Your
Requirements?” Standish Group
International, 2003.

5. Hayes, Frank. “Chaos Is Back.”
Computerworld Nov. 2004.

6. Carnegie Mellon University. “CMMISM

for Systems Engineering/Software
Engineering, Vers. 1.1, Staged Repre-
sentation.” CMU/SEI-2002-TR-002.
Dec. 2001.

7. Jacobs, Deb. “Accelerating Process
Improvement Using Agile Tech-
niques.” Auerbach Publications, 2006.

8. Carroll, Lewis. Alice’s Adventures in
Wonderland and Through the Looking
Glass. Reissue edition. Signet Classics,
2000

9. Barnard, Frederick R. Printers’ Ink.
Mar. 1927.

Additional Reading
1. Bashar Nuseibeh, and Steve Easter-

brook. “Requirements Engineering: A
Road Map.” 3rd International Sym-
posium on Requirements Engineering
<www.cs.toronto.edu/~sme/papers/
2000/ICSE2000.pdf>.

2. Scott Ambler. Ronin International,
Inc. The Elements of UML Style
<www.modelingstyle.info>.

3. McConnell, Steve. Construx Software
<www.stevemcconnell.com> or <www.
construx.com>.

COMING EVENTS

January 3-6

HICSS-40

Hawaii International Conference on

System Sciences

Waikoloa, HI

/www.hicss.hawaii.edu/hicss_40/

apahome40.htm

January 7-12

COMSWARE 2007

Second International Conference in

Communication System Software and

Middleware

Bangalore, India

www.comsware.org

January 8-12

CBIS ’07 Chemical and Biological

Information Systems Conference and

Exhibition

Austin, TX

www.ndia.org/

January 17-19

CEA ’07 Computer Engineering and

Applications

Queensland, Australia

http://wseas.org/conferences/2007/

australia/cea/

January 29-31

Enterprise Architecture Practitioners

Conference

San Diego, CA

www.opengroup.org/sandiego2007

June 18-21, 2007

2007 Systems and Software

Technology Conference

Tampa, FL

www.sstc-online.org

About the Author

Deb Jacobs has more
than 28 years of experi-
ence in information tech-
nology, including system
and software engineering,
project management,

process improvement and proposal
development and has helped many orga-
nizations be more successful in develop-
ment and management. She has provided
CMMI expertise to numerous organiza-
tions, including training, implementation,
and assessments/appraisals. Jacobs is
former Spinout newsletter editor/origina-
tor, former Computer Engineering
Readiness Team conference chairperson,
Infotec Deputy Software Tracks Chair,
SEI CMMI contributor, and is a member
of the CrossTalk Editorial Board.
Jacobs has authored several technical
articles and the popular process improve-
ment book Accelerating Process Improvement
Using Agile Techniques. She has a bachelor
of science in computer science.

Software Engineering Services
1508 JF Kennedy DR
STE 100
Bellevue, NE 68005
Phone: (402) 932-5349 or

(402) 292-8660
E-mail: djacobsfpa@aol.com or

djacobs@sessolutions.com

Dear CrossTalk Editor,
I just wanted to say that those were
REALLY great articles (very detailed,
nicely written). I got into Star Wars this
summer, and I know how exciting it can
be. See if you can beat this: I’ve watched
every episode except Revenge of the Sith,

I’m going to be Jango Fett the bounty
hunter for Halloween, AND I’m going
to be Luke Skywalker when my school
has Spirit Week!

May the Force be with you.

— Katelyn Crombie, age 12

LETTER TO THE EDITOR

14 CROSSTALK The Journal of Defense Software Engineering December 2006

Alargely neglected area in requirements
engineering is that of elicitation

methods for security requirements. Many
organizations, if they use an elicitation
method at all for security requirements,
use one that they have previously used for
ordinary, functional (end-user) require-
ments. Alternatively, they may decide to
use a brainstorming approach. Such meth-
ods are usually not oriented towards secu-
rity requirements and do not result in a
consistent and complete set of security
requirements.

Carnegie Mellon University (CMU)
graduate students, working with me, select-
ed and applied several elicitation methods
in a series of case studies [1]. In this arti-
cle, I describe a trade-off analysis that we
used to select a suitable requirements elici-
tation method and present results detailed
from a case study of one method and a
series of two other methods, used in a
series of case studies. While results may
vary from one organization to another, the
discussion of our selection process and
the example results should apply to all.

Elicitation Methods
The following is a sample of methods that
could be considered for eliciting security
requirements.

Misuse Cases
Misuse cases apply the concept of a nega-
tive scenario – that is, a situation that the
system’s owner does not want to occur – in
a use-case context. For example, business
leaders, military planners, and game play-
ers are familiar with analyzing their oppo-
nents’ best moves as identifiable threats.
By contrast, use cases generally describe
behavior that the system or entity owner
wants the system to show [2]. Use-case
diagrams have proven quite helpful for the
elicitation of requirements.

Soft Systems Methodology (SSM)
SSM deals with problem situations in

which there is a high social, political, and
human activity component [3]. The SSM
can deal with soft problems that are difficult
to define, rather than hard problems that are
more technology oriented. Examples of
soft problems are how to deal with home-
lessness, how to manage disaster planning,
and how to improve Medicare. Eventually,
technology-oriented problems may emerge
from these soft problems, but much more
analysis is needed to get to that point.

Quality Function Deployment (QFD)
QFD is an overall concept that provides a
means of translating customer require-
ments into the appropriate technical
requirements for each stage of product
development and production [4]. The dis-
tinguishing attribute of QFD is the focus
on customer needs throughout all product
development activities. By using QFD,
organizations can promote teamwork, pri-
oritize action items, define clear objec-
tives, and reduce development time.

Controlled Requirements
Expression (CORE)
CORE [5, 6] is a requirements-analysis
and specification method that clarifies the
user’s view of the services to be supplied
by the proposed system. In CORE, the
requirements specification is created by
the user and the developer, not one or the
other. The problem to be analyzed is
defined and broken down into user and
developer viewpoints. Information about
the combined set of viewpoints is then
analyzed. The last step of CORE deals
with constraints analysis such as the limi-
tations imposed by that system’s opera-
tional environment in conjunction with
some degree of performance and reliabil-
ity investigation.

Issue-Based Information Systems
(IBIS)
IBIS, developed by Horst Rittel, is based
on the principle that the design process

for complex problems, which Rittel terms
wicked problems, is essentially an exchange
among the stakeholders in which they
bring their personal expertise and perspec-
tive to the resolution of design issues [7].
Any problem, concern, or question can be
an issue and may require discussion and
resolution in order for the design to pro-
ceed. The IBIS model centers on the dis-
cussion and resolution that is an integral
part of the design process.

Joint Application Development (JAD)
JAD [8] is specifically designed for the
development of large computer systems.
The goal of JAD is to involve all stake-
holders in the design phase of the product
via highly structured and focused meet-
ings. In the preliminary phases of JAD,
the requirements-engineering team is
tasked with fact finding and information
gathering. Typically, the outputs of this
phase – as applied to security require-
ments elicitation – are security goals and
artifacts. The actual JAD session is then
used to validate this information by estab-
lishing an agreed-upon set of security
requirements for the product.

Feature-Oriented Domain Analysis
(FODA)
FODA is a domain analysis and engineer-
ing method that focuses on developing
reusable assets [9]. By examining related
software systems and the underlying theo-
ry of the class of systems they represent,
domain analysis can provide a generic
description of the requirements of that
class of systems in the form of a domain
model, and a set of approaches for their
implementation.

The FODA method was founded on
two modeling concepts: abstraction and
refinement. Abstraction is used to create
domain models, as described above, from
the specific applications in the domain.
Specific applications in the domain are
developed as refinements of the domain

Experiences in Eliciting Security Requirements

There are many requirements elicitation methods, but we seldom see elicitation performed specifically for security requirements.
One reason for this is that few elicitation methods are specifically directed at security requirements. Another factor is that orga-
nizations seldom address security requirements elicitation specifically and instead lump them in with other traditional require-
ments elicitation methods. This article describes an approach for doing trade-off analysis among requirements elicitation meth-
ods. Several case studies were conducted in security requirements elicitation; the detailed results of one case study and brief
results of two other case studies are presented here.

Dr. Nancy R. Mead
CERT, Software Engineering Institute

Experiences in Eliciting Security Requirements

December 2006 www.stsc.hill.af.mil 15

models. The example domain used in the
report [9] is that of window-management
systems.

Critical Discourse Analysis (CDA)
CDA uses sociolinguistic methods to ana-
lyze verbal and written discourse [10]. In
particular, CDA can be used to analyze
requirements elicitation interviews and to
understand the narratives and stories that
emerge during requirements elicitation
interviews.

Accelerated Requirements Method
(ARM)
ARM is a facilitated requirements elicita-
tion and description activity process [11].
Overall, there are three phases of the
process: Preparation phase, Facilitated
Session phase, and Deliverable Closure
phase. The ARM process is similar to
JAD, but it also has certain significant dif-
ferences with respect to the baseline JAD
method. In the ARM process, the facilita-
tors are content-neutral, the group
dynamic techniques used are different
from those used in JAD, the brainstorm-
ing techniques used are different, and the
requirements are recorded and organized
using different conceptual models.

Evaluation Criteria
The following are example evaluation cri-
teria (project participants need to have a
common understanding of what they
mean in order to use them in selecting an
elicitation method):
• Adaptability. The method can be

used to generate requirements in mul-
tiple environments. For example, the
elicitation method works equally as
well with a software package that is
near completion as with a project in
the planning stages.

• Computer-aided software engineer-
ing (CASE) tool. The method
includes a CASE tool. (The Software
Engineering Institute [SEI] defines a
CASE tool as a computer-based product
aimed at supporting one or more software
engineering activities within a software devel-
opment process [1].)

• Stakeholder acceptance. The stake-
holders are likely to agree on the elici-
tation method in analyzing their
requirements. For example, the method
is not too invasive in a business envi-
ronment and can be implemented in a
reasonable amount of time.

• Easy implementation. The elicita-
tion method is not overly complex and
can be properly executed easily.

• Graphical output. The method pro-
duces readily understandable visual

artifacts.
• Quick implementation. The require-

ments engineers and stakeholders can
fully execute the elicitation method in
a reasonable length of time.

• Shallow learning curve. The require-
ments engineers and stakeholders can
fully comprehend the elicitation method
within a reasonable length of time.

• High maturity. The elicitation method
has experienced considerable exposure
and analysis in its vetting by the require-
ments engineering community.

• Scalability. The method can be used
to elicit the requirements of projects of
different sizes, from enterprise-level
systems to small-scale applications.

Ranking Against the Criteria
The elicitation methods can be ranked
against the criteria using a tabular form. In
Table 1, we have filled in the values that
the student team decided on for the sam-
ple methods. Each method was rated
according to the desired features, and the
rankings were simply added to provide a
summary result. A weighted average could
also have been used if some features were
considered to be more important than
others. For example, availability of a
CASE tool might be more important than
graphical output. A typical weighting
scheme could consider criteria to be essen-
tial with weight 3, desirable with weight 2,
and optional with weight 1. This sort of
evaluation is subjective, particularly since
the students worked under time con-
straints and did not have prior experience
with this, so results may vary. Each orga-
nization or project should develop its own
comparison criteria and its own ratings.

In our case studies, we decided to use
JAD, ARM, and IBIS on three different pro-
jects. These three methods were subjectively
ranked to be the most suitable candidates

for the case studies, given our constraints.
The student team’s allotted time was con-
strained, since this was a one-semester pro-
ject. It was also the case, however, that the
clients had limited time to devote to this
exercise. Therefore, time constraints are
mentioned several times.

It is important to note that although
students did the elicitation, the projects
studied were real industry and government
projects, not software projects developed
by students in an academic setting. It is
also possible that a combination of meth-
ods may work best. This should be con-
sidered as part of the evaluation process.

Security Requirements
Elicitation Results
In this section, we present brief results
for IBIS and JAD and detailed results
for ARM. Detailed results for all three
methods can be found in the Require-
ments Engineering section of the
BuildSecurityIn Web site [12] and in the
case study report [1].

Brief Results for IBIS
The effectiveness of IBIS in eliciting secu-
rity requirements depends on the quality
of the interview questions. To the greatest
extent possible, the scope of questions
must cover the entire range of security
requirements that could possibly involve
the system. We found that the interviewer
must be persistent in encouraging the
stakeholders to explain their rationale
when proposing a solution to an issue. By
explaining why they have chosen such a
position, the stakeholders can naturally
discuss the pros and cons among them-
selves. In addition to proper question
selection, we found that the success of
IBIS is directly proportional to the variety
and level of participation of stakeholders
in the project. In fact, in our case study,

Misuse

Cases

SSM QFD CORE IBIS JAD FODA CDA ARM

Adaptability 3 1 3 2 2 3 2 1 2

CASE Tool 1 2 1 1 3 2 1 1 1

Stakeholder

Acceptance

2 2 2 2 3 2 1 3 3

Easy

Implementation

2 2 1 2 3 2 1 1 2

Graphical

Output

2 2 1 1 2 1 2 2 3

Quick

Implementation

2 2 1 1 2 1 2 2 3

Shallow

Learning Curve

3 1 2 1 3 2 1 1 1

High Maturity 2 3 3 3 2 3 2 2 1

Scalability 1 3 3 3 2 3 2 1 2

Total Score 18 18 17 16 22 19 14 14 18

3 = Very Good, 2 = Fair, 1 = Poor

1. The ability to securely transmit data to remote sources

2. The preservation of data integrity

3. The enforcement and usability of an access control system

4. Where possible, security must be manageable and not hinder business

5. There must be a strong, reliable authentication process

6. Information must be kept private from the outside world

7. Consistent application program interfaces (APIs)

8. Data integrity

9. Authentication and access control

10. Strong authentication

11. Reduce or eliminate risks of inappropriate behavior

12. Granular access to data for users (operators) and customers

13. Accountability (who did what, when, how, …)

14. Integrity (assurance in data protection and validity)

15. Indelibility (detections and retractions are noted or logged)

16. Integrity

17. Access control

18. Confidentiality (encryption, etc.)

19. Partitioned data store—public read only and private read/write

20. Selectively secure communication with outside entities

21. Represent and support segmented disclosure

22. Role-based, restricted view, edit, and action access (e.g., summary report information,

public for particular people)

23. Available 24/7 via remote authenticated access and secure

24. Key action audit (e.g., attribution of who pressed the publish button and from where, and

what changes were made)

3. The enforcement and usability of an access control system

4. Where possible, security must be manageable and not hinder business

6. Information must be kept private from the outside world

7. Consistent (APIs)

8. Data integrity

10. Strong authentication

11. Reduce or eliminate risks of inappropriate behavior

12. Granular access to data for users (operators) and customers

13. Accountability (who did what, when, how, …)

15. Indelibility (detections and retractions are noted or logged)

18. Confidentiality (encryption, etc.)

19. Partitioned data store—public read only and private read/write

20. Selectively secure communication with outside entities

21. Represent and support segmented disclosure

22. Role-based, restricted view, edit, and action access (e.g., summary report information,

public for particular people)

23. Available 24/7 via remote authenticated access and secure

24. Key action audit (e.g., attribution of who pressed the publish button and from where, and

what changes were made)

Table 1: Comparison of Elicitation Methods

Requirements Engineering

IBIS worked best when different stake-
holders presented opposing viewpoints,
which is common in large-scale projects.
The Compendium software tool associat-
ed with IBIS was easy for the student team
to use and effective in generating IBIS
maps. To avoid displaying extremely large
maps (which our stakeholders found diffi-
cult to read), we recommend exploiting
the nested maps feature in Compendium.
This feature enables the user to hide some
of the lower-level details of the maps by
nesting them inside other map elements,
while maintaining the ability to drill down
into the details if requested. In fact, a
comment received from the stakeholders
indicated that such a hierarchical map
structure would have been more beneficial
in handling some of the larger maps.

Brief Results for JAD
Due to time constraints, we did not define
the work flow, data elements, screens, and
reports of the project, so the JAD
method turned out to be very similar to
an unstructured interview process.
Although unstructured interviews were
used in an earlier case study, we did not
attempt to do a direct comparison of the
JAD results with those earlier case study
results. In essence, the team just asked the
stakeholders some questions about the
project. Thus, the team did not use the
full capability of the JAD method, which
may have biased the results. The JAD ses-
sion phase was designed for developing
functional (end user) requirements; there
was no specific way to discuss quality
requirements such as security. Therefore,
the team spent a lot of time researching
other methods to assist in obtaining bet-
ter security requirements during the JAD
session. The team suggests that JAD be
used with an additional method to deal
with quality requirements.

Detailed Results for ARM
Results obtained using ARM on a govern-
ment project are described below. This is
not a military project, but the security con-
cerns, such as access control, are similar to
the typical security concerns of military
projects. ARM is designed to elicit, cate-
gorize, and prioritize security require-
ments. As noted earlier, the ARM method
includes three phases.

Preparation Phase
As the name implies, this phase is used to
prepare for the Session phase. There are
six steps in the Preparation phase:
1. Define goals, objectives, and project

success criteria (PSC) of the project.
2. Define objectives and preliminary

scope of the session.
3. Establish partitions and identify par-

ticipants.
4. Determine environmental and logisti-

cal aspects.
5. Establish expectations for participants.
6. Communicate with participants.

One way to obtain this information is
to use a feedback form composed of
questions for the stakeholders. The list of
questions can be found in the case study
report [1]. The stakeholders should be
given a few business days to complete and
return the form. In the meantime, the
requirements engineering team can pre-
pare a memorandum containing goals,
objectives, PSC, preliminary scope, parti-
tion definitions, participants, and logistic
arrangements. Participants should read the

memorandum before the Session phase to
understand the content, expectation, and
goals of the method. The overall goal of
the memorandum is to increase the quali-
ty of the Session phase.

Depending on the results of the stake-
holders’ feedback forms, another meeting
with the stakeholders may be necessary
before beginning the Session phase.

Session Phase
The Session phase is the heart of the
ARM process. It includes six steps:
1. Executive sponsor commentary.
2. Scope closure.
3. Brainstorm, organize, and name (BON).
4. Details.
5. Prioritization.
6. Participant feedback.
Before the Session phase meeting, logisti-
cal arrangements should be made to
ensure that the meeting goes smoothly.
The detailed list of logistical items can be

found in the case study report [1].

Executive Sponsor Commentary.
This step allows executive sponsors to
provide introductory remarks to the par-
ticipants regarding the planned session.
Depending on the project organization,
this step may or may not be necessary.

Scope Closure. The purpose of this
step is to define what is in or out of scope.
When eliciting security requirements, par-
ticipants might need to familiarize them-
selves with security issues ahead of time
to make this determination.

BON. The BON step provides an effi-
cient way to elicit the candidate require-
ments from participants. The require-
ments engineering team can start by ask-
ing the participants the focus question, which
should be crafted to tie to the goals, objec-
tives, and scope of the project together.
For example: An important security require-
ment of the beta application is… Based on
their professional experience and security
knowledge, the participants are then asked
to write down seven important security
requirements within seven minutes.

Next, the participants are asked to
write their top three or four security
requirements on cards within three min-
utes. The requirements engineering team
then collects the cards and displays the
candidate security requirements. The can-
didate security requirements produced in
this example are listed in the following 24
initial requirements produced in ARM:
1. The ability to securely transmit data to

remote sources.
2. The preservation of data integrity.
3. The enforcement and usability of an

access control system.
4. Manageable security (and not hinder

business where possible).
5. A strong, reliable authentication

process.
6. Private information (from the outside

world).
7. Consistent application program inter-

faces (APIs).
8. Data integrity.
9. Authentication and access control.
10. Strong authentication.
11. Risk reduction or elimination of risk

of inappropriate behavior.
12. Granular access to data for users

(operators) and customers.
13. Accountability (who did what, when,

how...).
14. Integrity (assurance in data protection

and validity).
15. Indelibility (deletions and retractions

are noted/logged).
16. Integrity.
17. Access control.

16 CROSSTALK The Journal of Defense Software Engineering December 2006

“Results obtained using
ARM on a government
project are described

here.This is not a
military project, but the
security concerns, such

as access control,
are similar to the

typical security concerns
of military projects.”

December 2006 www.stsc.hill.af.mil 17

18. Confidentiality (encryption, etc.).
19. Partitioned data store (public read only

and private read/write).
20. Selectively secure communication with

outside entities.
21. Segmented disclosure representation

and support.
22. Role-based restricted views/edit/ action

access (e.g., summary report informa-
tion, public for particular people).

23. 24/7 availability via remote authenti-
cated access and secure.

24. Key action audit (e.g., attribution of
who/from where the publish button
was pressed, what changes were
made).
In the Organize step, all the partici-

pants review the candidate security
requirements generated during the brain-
storming session to see whether any dupli-
cate or inadequate security requirements
were included. Then the participants dis-
cuss what they think are important
requirements. This step provides an
opportunity for the participants to share
their security concerns about the project.
After a period of discussion and debate,
they delete candidate security require-
ments that are viewed as redundant or
inappropriate.

The participants removed require-
ments 1, 2, 5, 9, 14, 16, and 17. The
remaining requirements after initial elimi-
nations are:
3. The enforcement and usability of an

access control system.
4. Manageable security (and not hinder

business where possible).
6. Private information (from the outside

world).
7. Consistent APIs.
8. Data integrity.
10. Strong authentication.
11. Risk reduction or elimination of risk

of inappropriate behavior.
12. Granular access to data for users

(operators) and customers.
13. Accountability (who did what, when,

how...).
15. Indelibility (deletions and retractions

are noted/logged).
18. Confidentiality (encryption, etc.).
19. Partitioned data store (public read only

and private read/write).
20. Selectively secure communication with

outside entities.
21. Segmented disclosure representation

and support.
22. Role-based restricted views/edit/ action

access (e.g., summary report informa-
tion, public for particular people).

23. 24/7 availability via remote authenti-
cated access and secure.

24. Key action audit (e.g., attribution of

who/from where the publish button
was pressed, what changes were
made).
In the Name step, the participants are

instructed to group the selected security
requirements and create names for each
group. In this example, security require-
ments, groups, and names were generated
together and descend in order of impor-
tance from A-F (as shown in Figure 1,
page 18). The security requirements are
categorized into six groups, each contain-
ing between one and four security require-
ments. This step can result in addition or
deletion of requirements. The following
are the grouped requirements contained in
each:
• Group A: Confidentiality: Information

must be kept private from the outside
world; communication with outside
entities must be selectively secured.

• Group B: Access Control: Role-based
restricted views/edit/action access
(e.g., summary report information,
public for particular people); enforce-
ment and usability of an access control
system; granular access to data for
users (operators) and customers; seg-
mented disclosure support and repre-
sentation.

• Group C: Data Integrity: Partitioned
data store (public read only and private
read/write); indelibility.

• Group D: Manageability: Account-
ability; key action audit (e.g., attribu-
tion of who/from where the publish
button was pressed and what changes
were made); auditing capabilities.

• Group E: Usability: Security must be
manageable and not hinder business
(where possible); must be available
24/7 via remote authenticated access;
must have consistent APIs; must
reduce or eliminate risks of inadver-
tent behavior.

• Group F: Authentication: Strong
authentication.

Details: Benefits, Proof,Assumptions, Iss-
ues, and Action Items. In Step 4, the par-
ticipants are asked to evaluate each re-
quirement using the following 10 questions:
1. Is the candidate requirement a frag-

ment or duplicate of anything that has
already been discussed?

2. According to the contributor and the
group, is the candidate requirement
fragment in scope?

3. Would you like to change the title?
4. If you had this capability, how would it

help the business?
5. What will you consider acceptable evi-

dence that the envisioned capability

Experiences in Eliciting Security Requirements

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MXDEA

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:
AUG2005 c SYS: FIELDG. CAPABILITIES

SEPT2005 c TOP 5 PROJECTS

OCT2005 c SOFTWARE SECURITY

NOV2005 c DESIGN

DEC2005 c TOTAL CREATION OF SW
JAN2006 c COMMUNICATION

FEB2006 c NEW TWIST ON TECHNOLOGY

MAR2006 c PSP/TSP
APR2006 c CMMI
MAY2006 c TRANSFORMING

JUNE2006 c WHY PROJECTS FAIL

JULY2006 c NET-CENTRICITY

AUG2006 c ADA 2005
SEPT2006 c SOFTWARE ASSURANCE

OCT2006 c STAR WARS TO STAR TREK

NOV2006 c MANAGEMENT BASICS

To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.

has been successfully delivered to the
business?

6. Are there any special constraints on
the requirement?

7. Are there any assumptions made
regarding the requirement?

8. What are the remaining issues and
actions items for the requirement?

9. Are there any related notes or com-
ments?

10. Is there anything that needs to be
clarified by the supplier of the
requirement?

In this case, the security requirements were
reviewed collectively, not individually.

Prioritization. In the BON step of ARM,
the participants generate the candidate
security requirements of their project,
then modify and refine the projected
security requirements in the Details step
to ensure that the requirements are
unambiguous, clear, and concise.

The Prioritization phase of the ARM
method begins with the requirements
engineering team providing instructions
to guide participants to label each
requirement as either A, B, or C, where A
stands for most important, B stands for
very important, and C stands for impor-
tant. The rankings are to be assigned
equally across the security requirements.

After the session concludes, the scores
are calculated. First, the requirements
engineering team substitutes the rankings
A, B, and C with numeric values 9, 3, and
1, respectively. Then, the team calculates
the average score of each requirement.
The results are shown in Figure 1.

These are the final requirements in
priority order:

1. The system shall utilize cryptographi-
cally strong authentication.

2. The information in the system must be
kept private from unauthorized users.

3. The system shall implement selective-
ly secure communication with outside
entities.

4. The system shall utilize and enforce
an access control system.

5. The system will attempt to reduce or
eliminate risks of inadvertent behavior.

6. The system shall provide granular
access to data for users (operators)
and customers.

7. The system shall provide role-based,
restricted view, edit, and action access
(e.g., summary report information,
public for particular people).
(tied with)
The system shall represent and sup-
port segmented disclosure.

8. The system shall implement auditing
capabilities.

9. The system shall provide accountabil-
ity of users’ actions.
(tied with)
The system will be available 24/7 via
remote authenticated access.

10. The system shall maintain a parti-
tioned data store that is public read
only and private read/write.
(tied with)
The system shall implement a key
action audit (e.g., attribution of who
pressed the publish button and from
where, and what changes were made).

11. The system shall implement indelibility.
(tied with)
Where possible, the system’s security
features must be manageable and not
hinder business.

12. The system shall expose consistent
APIs to developers.

Based on the result of the prioritization,
the participants can then develop a plan
to effectively implement their security
requirements.

Stakeholders’ Feedback. In the final
portion of the Session phase, the team
requested that the participants fill out a feed-
back form that was used to collect informa-
tion to improve the method. Example ques-
tions are similar to the following:
• What did you like or not like about

the Session phase?
• What did you think was the most

important part of the Session phase?
• What would you change about the

Session phase?

Deliverable Closure
In this study, the set of stakeholders was
relatively small and Deliverable closure
took place informally at the Session phase.

Results Summary for ARM
Overall, ARM is an effective and rapid
method of collecting requirements. By
simply choosing the correct focus ques-
tion, the process is easily adapted to elic-
it security requirements. Due to the large
number of questions that must be asked
for each requirement, we recommend
enforcement of strict time management
and proactive guidance of the discus-
sions among the stakeholders.

Depending on the security expertise
of the participants, the requirements
engineering team may need to review
some security concepts with the partici-
pants before the session begins.

ARM was developed for use in a com-
mercial environment, and thus, may
focus excessively on features.

Results Summary for All
Elicitation Methods
ARM seemed better suited to elicitation
of security requirements than either IBIS
or JAD. JAD seemed more suited to end-
user functional requirements and provid-
ed no specific way to discuss quality
requirements such as security. We found
that IBIS was effective for documenting
complex decision-making discussions but
did not provide a structured way of gen-
erating security requirements.

We later experimented with other pri-
oritization methods [1], notably Analytic
Hierarchy Process (AHP), which seemed
to provide more systematic prioritization
than ARM.

Future Plans
These case studies are part of the securi-

Requirements Engineering

18 CROSSTALK The Journal of Defense Software Engineering December 2006

0

1

2

3

4

5

6

7

8

9

V
a
lu

e

A1 A2 B1 B2 B3 B4 C1 C2 D1 D2 D3 E1 E2 E3 E4 F1

Requirement

Prioritization

Figure 1: Ranked Score of the Requirements

ty quality requirements engineering
(SQUARE) project [13]. Current plans
call for a comparison of SQUARE with
other security requirements engineering
methods, experimental combination of
elicitation and prioritization methods (for
example, combining ARM for elicitation
with AHP for prioritization), develop-
ment of supporting tools, and develop-
ment of tutorial materials.u

Acknowledgement
This work was part of a more extensive
case study project by CMU graduate stu-
dents Lydia Chung, Frank Hung, Eric
Hough, and Don Ojoko-Adams [1]. This
work is supported by the Army Research
Office through grant number DAAD19-
02-1-0389 (“Perpetually Available and
Secure Information Systems”) to CMU’s
CyLab.

References
1. Chung, L., et al. Security Quality Re-

quirements Engineering (SQUARE):
Case Study Phase III. Pittsburgh, PA:
SEI, CMU, 2006 <www.sei.cmu.edu/
publications/documents/06.reports/
06sr003.html>.

2. Sindre, G., and A.L. Opdahl. “Eliciting
Security Requirements by Misuse
Cases.” 37th International Conference
on Technology of Object-Oriented
Languages (Tools 37-Pacific 2000).
Sydney, Australia, Nov. 20-23, 2000.
Los Alamitos, CA: Institute of
Electrical and Electronics Engineers
Computer Society, 2000.

3. Checkland, P. Soft Systems Methodol-

ogy in Action. Ontario, Canada: John
Wiley & Sons, 1990.

4. QFD Institute. “Frequently Asked
Questions About QFD.” 2005 <www.
qfdi.org/what_is_qfd/faqs_about_qfd
.htm>.

5. Christel, M., and K. Kang. Issues in
Requirements Elicitation. Pittsburgh,
PA: SEI, CMU, 1992 <www.sei.cmu.
edu/publications/documents/92.
reports/92.tr.012.html>.

6. Systems Designers Scientific. CORE –
The Method: User Manual. London,
England: SD-Scicon, 1986.

7. Kunz, W., and H. Rittel. Issues as
Elements of Information Systems.
Berkeley: Institute of Urban and
Regional Development, University of
California, 1970 <www.iurd.ced.
berkeley.edu/pub/WP-131.pdf>.

8. Wood, J., and D. Silver. Joint
Application Development. 2nd ed.
New York: John Wiley & Sons, 1995.

9. Kang, K.C., et al. Feature-Oriented
Domain Analysis Feasibility Study.
Pittsburgh, PA: SEI, CMU, 1990 <www.
sei.cmu.edu/publications/documents/
90.reports/90.tr.021.html>.

10. Schiffrin, D. Approaches to Discourse.
Oxford, England: Blackwell Publishers
Ltd, 1994.

11. Hubbard, R., Nancy R. Mead, and C.
Schroeder. “An Assessment of the
Relative Efficiency of a Facilitator-
Driven Requirements Collection Pro-
cess With Respect to the Conventional
Interview Method.” Proc. of the Inter-
national Conference on Requirements
Engineering. Los Alamitos, CA: IEEE

Computer Society Press, 2000.
12. United States. Dept. of Homeland

Security. BuildSecurityIn Portal. Na-
tional Cyber Security Division <https://
buildsecurityin.us-cert.gov/>.

13. Mead, N.R., et al. Security Quality
Requirements Engineering (SQUARE)
Methodology. Pittsburgh, PA: SEI,
CMU, 2005 <www.sei.cmu.edu/publi
cations/documents/05.reports/05tr0
09.html>.

Experiences in Eliciting Security Requirements

December 2006 www.stsc.hill.af.mil 19

About the Author

Nancy R. Mead, Ph.D.,
is a senior member of
the technical staff in the
Networked Systems
Survivability Program at
the SEI and is also a fac-

ulty member in the Master of Software
Engineering and Master of Information
Systems Management programs at CMU.
Her research interests are in the areas of
information security, software require-
ments engineering, and software archi-
tectures. Mead has more than 100 publi-
cations and invited presentations. She
has a doctorate in mathematics from the
Polytechnic Institute of New York and
bachelor and master degrees in mathe-
matics from New York University.

SEI
4500 Fifth AVE
Pittsburgh, PA 15213
E-mail: nrm@sei.cmu.edu

The Department of Defense (DoD)
increasingly relies on the Defense

Information Infrastructure (DII) that
connects mission support, command and
control, and intelligence computers and
users through voice, data, imagery, video,
and multimedia services, and provides
information processing and other value-
added services [1]. These services are
dependent on the quality of underlying
software, systems, practice, and environ-
ment to promote trust in the information
furnished to the DoD and national-level
decision makers. Therefore, the infrastruc-
ture-wide DoD Information Technology
Security Certification and Accreditation
Process (DITSCAP) [1] was introduced to
ensure that the DoD’s needs for software
assurance are uniformly considered and
maintained throughout the life cycle of all
information systems that support infor-
mation processing services within the DII.

The DITSCAP1 is the standard DoD
process for identifying information securi-
ty requirements, providing security solu-
tions and managing information systems
security activities [1]. DITSCAP defines
certification as the comprehensive evalua-
tion of the technical and non-technical
security features of an information system
to establish the extent to which a particu-
lar design and implementation meets a set
of specified security requirements. After
this evaluation, the accreditation state-
ment is an approval to operate the infor-
mation system in a particular security
mode using a prescribed set of safeguards
at an acceptable level of risk. Using the
DITSCAP to certify an information sys-
tem is not simply a one-time process; it is
maintained throughout the life cycle of
the information system.

DITSCAP Limitations
Security requirements for DITSCAP certi-
fication address software assurance needs
from diverse dimensions of process, orga-

nization, cost, time, data sensitivity, user
clearance, system capabilities, develop-
ment, deployment, maintenance, architec-
ture, inventory, impact of non-availability,
operational facilities, and other socio-tech-
nical aspects. Despite such a comprehen-
sive coverage of software assurance needs,
current DITSCAP practices have several
limitations.

Practicing DITSCAP requires familiar-
ity with several guidance documents from
different levels in the DoD organizational
hierarchy to identify the applicable set of
security requirements necessary for certi-
fication. These documents include the
DITSCAP application manual [2]; federal
laws from the Office of Management and
Budget; public laws; DoD and
Department of Navy (DoN)2 information
assurance policies and implementations;
National Institute of Standards and
Technology (NIST) best practices for
computer security; and many others. Each
document usually ranges between 25 and
200 pages with heavy cross-referencing to
other documents, making it extremely dif-
ficult to manually comprehend the inter-
dependencies among their contents. In
essence, the certification requirements
with different levels of granularity in their
specifications are scattered across multiple
documents that provide guidance for
C&A activities. These factors introduce a
great deal of subjectivity in making deci-
sions about the applicability, scope, and
impact of non-compliance of DITSCAP
security requirements. Table 1 summarizes
these key decision points. Addressing
these decision points with objective, justi-
fiable, and repeatable criteria is critical to
establish the assurance of reliable behav-
ior of an information system subject to
DITSCAP certification requirements.
However, the interdependencies that exist
among numerous certification require-
ments from multiple sources/documents
severely complicate these decision points.

Due to the non-functional nature of
DITSCAP certification requirements,
these requirements often constrain diverse
aspects of information system behavior in
complex ways that are not readily apparent
from their natural language descriptions.
Additionally, understanding the interac-
tions among various aspects of informa-
tion system behavior is essential to reveal
the cascading effects of the impact from
the non-compliance of a certain certifica-
tion requirement on overall system
dependability.

Due to the limitation of current prac-
tices in addressing these issues, justifying
compliance with certification require-
ments often satisfies a mere bureaucratic
necessity without thoroughly understand-
ing their consequences on the overall
information system dependability and
associated security risks. As a result,
despite enormous efforts and resources
currently spent on DoD software assur-
ance initiatives, their effectiveness is only
limited [3].

The Need for a Common
Understanding of Requirements
Natural language security requirements for
DITSCAP certification have little or no
structural regularity in their specifications.
Based on the seven facets of complete
requirements – who, where, what, when, why,
which, and how – a security requirement typ-
ically requires one to identify concepts
related to 1) the assets that it protects, 2) the
threats that it is driven by, 3) the vulnerabil-
ities that it prevents, 4) the countermeasures
that it suggests, 5) the mission criticality
that it is subject to, 6) its source, 7) the goal
of the security requirement, 8) the related
stakeholders, and 9) other domain-specific
concepts that need to be considered for cre-
ating a context that facilitates their uniform
interpretation. However, most DITSCAP-
enforced security requirements either do

Requirements as Enablers for Software Assurance

The level of compliance with Certification and Accreditation (C&A) requirements conveys the level of assurance that one
can expect from the quality of software behavior. Therefore, it is critical to understand the C&A requirements in terms of
their applicability, scope, and impact of non-compliance on diverse aspects of software behavior to justify its certified quali-
ties. However, numerous C&A requirements in ambiguous natural language descriptions with different levels of granulari-
ty are scattered across multiple documents that are used as guidance for C&A activities. As a result, a great deal of sub-
jectivity is involved in understanding C&A requirements and their evaluation. This article discusses our approach to repre-
sent, model, and analyze C&A requirements to promote a common understanding among stakeholders for engineering more
reliable software.

Dr. Seok-Won Lee and Robin A. Gandhi
The University of North Carolina at Charlotte

20 CROSSTALK The Journal of Defense Software Engineering December 2006

Requirements as Enablers for Software Assurance

December 2006 www.stsc.hill.af.mil 21

not explicitly identify these concepts or they
are dispersed across multiple documents,
making it difficult to practice DITSCAP
and utilize its results for promoting soft-
ware assurance.

To address these issues, we focus our
research efforts on understanding and
modeling the DITSCAP security require-
ments and related concepts in ways that
support software assurance efforts. It is
important to recognize that the assurance
of trustworthy software behavior is deter-
mined by the needs of the problem
domain. For example, in the DoD prob-
lem domain, security is of primary con-
cern, whereas in the aviation problem
domain, safety is of primary concern.
Therefore, to effectively understand soft-
ware assurance needs in the DoD as
scoped by DITSCAP security require-
ments, we have produced a DITSCAP
problem domain ontology. The meaning
of ontology as adopted from the field of
knowledge engineering refers to a set of
concepts or terms that can be used to
describe some area of knowledge or build
a representation of it.

By combining techniques from
requirements engineering and knowledge
engineering we produce hierarchical onto-
logical models [4] that characterize soft-
ware assurance needs of the DoD.
Specifically, we analyze each DITSCAP-
related guidance document to extract
ontological concepts that help in classify-
ing and categorizing the DITSCAP securi-
ty requirements from diverse dimensions.
These ontological concepts are modeled
as a hierarchy with several non-taxonomic
interdependencies identified from
DITSCAP-related guidance documents.
The resulting ontology explicitly captures
the concepts related to certification
requirements and the relationships among
them at different levels of granularity, pre-
viously scattered across multiple docu-
ments. The ontology promotes a common
understanding among various stakehold-
ers regarding DITSCAP security require-
ments specified within the federal, DoD,
DoN, and NIST guidance documents at
different levels of abstraction. Such a
structured representation of DITSCAP
security requirements facilitates a uniform
understanding of their applicability, scope,
and impact of non-compliance through its
explicit traceable rationales and visual
exploration capabilities.

Our approach to ontology develop-
ment is primarily problem driven; its cre-
ation is guided based on the problem solv-
ing notions of goals, scenarios, and view-
points (requirements engineering tech-
niques) that effectively characterize the

required dependable software behavior
from diverse dimensions. The resulting
integrated ontology is a human and
machine understandable, hierarchical
model of software assurance needs in the
DoD, engineered using object-oriented
ontological domain modeling techniques
[5]. Goal-, scenario-, and viewpoint-based
requirements engineering techniques are
used to drive the identification of con-
cepts related to a security requirement
from DITSCAP-related guidance docu-
ments as structured representations of the
following: 1) A hierarchy of requirement
types that categorize security requirements
from DITSCAP-related guidance docu-
ments; 2) A viewpoints hierarchy that
models different perspectives and related
stakeholders of a security requirement; 3)
A risk assessment taxonomy that models
risk factors from a broad spectrum of per-
ceived risk sources identified in DITSCAP
security requirements; 4) A hierarchy of
C&A goals and related scenarios that
models the DITSCAP process activities
for gathering user/system criteria related
to determining the applicability of securi-
ty requirements; 5) A network-based
information discovery taxonomy that
aggregates results from network monitor-
ing tools and scripts to assess compliance
with security requirements in the actual
environment; and 6) Interdependencies
among various concepts in the DITSCAP
ontology. These ontological concepts clas-
sify and categorize the certification
requirements from multiple dimensions.
Here, we briefly discuss the goal-driven
process of identifying interdependent cer-
tification requirements categories scat-

tered across multiple documents to pro-
duce a requirements hierarchy; however,
further details about other models are in
[5, 6] or available by contacting the
authors.

Requirements Extraction and
Modeling
As a first step towards understanding
DoD software assurance needs based on
DITSCAP security requirements, we iden-
tify the interdependencies among
DITSCAP-related guidance documents
using the cross-referential nature of their
contents. We determine a hierarchical rela-
tionship among the generic federal-level
documents, domain-spanning DoD and
DoN policy/NIST security guidance doc-
uments, and site/agency specific DoD and
DoN information assurance implementa-
tion guidance documents based on the
level of abstraction pertaining to
DITSCAP certification requirements
specified within them.

Once the document interdependencies
become apparent, a top-down goal
decomposition approach systematically
identifies interdependent requirements
categories from multiple documents at
different levels of abstraction. High-level
assurance goals identified from certifica-
tion requirements in federal-level guidance
documents drive the elicitation of specific
certification requirements which satisfy
their parent goals from DoD/DoN/
NIST guidance documents. Figure 1 (see
page 22) elaborates on this process for the
high-level assurance goal of Screening
Individuals identified from certification
requirements (annotated using the Label

Decision Point

Categories

Key DITSCAP

Decision Points

Applicability DP1. Which regulatory documents should be used to identify

C&A requirements?

DP2. At what level of granularity should C&A requirements

be identified?

DP3. What are the types of the systems (for example, a

major application or general support system)

addressed by C&A requirements?

DP4. What redundancies exist among C&A requirements

and how should they be discovered?

Scope DP5. Is the identified set of applicable C&A requirements

complete?

DP6. Who is responsible for or affected by (stakeholders)

the C&A requirements?

Impact of

Non-compliance

DP7. What are the criteria to assess requirements

compliance?

DP8. Do the compliance criteria provide a complete

coverage of the different dimensions addressed by a

given requirements?

DP9. What are the risks associated with the system at a

particular compliance level with C&A requirements?

Table 1: DITSCAP Decision Points

Requirements Engineering

1) expressed in a federal-level document.
To satisfy this goal, we identify specific
certification requirements pertaining to
background investigation and other relevant
security requirements categories (annotat-
ed using the Labels 2, 3, and 4 in Figure 1)
from DoD/DoN/NIST documents. This
process explicitly models the security
requirement categories, their properties,
and the relationships among them, span-

ning multiple DITSCAP-related guidance
documents from different levels in the
DoD organizational hierarchy.

The requirements hierarchy, modeled
within the DITSCAP ontology, aggregates
these requirements categories through a
hierarchical representation that includes
top-level generic requirements categories,
mid-level domain spanning requirements
and low-level agency specific require-

ments. Such a hierarchical organization of
requirements types allows for a systematic
exploration of DITSCAP security require-
ments during certification activities. A par-
tial requirements hierarchy that explicitly
models the requirements categories and
their relationships identified in Figure 1 is
depicted in Figure 2 with corresponding
requirement labels. The security require-
ments hierarchy also promotes consisten-
cy in managing requirements from multi-
ple documents by providing a generic set
of categories. For example in Figure 2, the
Federal Security Controls and DoD Security
Controls requirements categories provide
consistency and traceability among certifi-
cation requirements extracted from feder-
al and DoD C&A guidance documents
respectively.

Our ontology development efforts are
supported by the GENeric Object Model
(GenOM) toolkit [7]. GenOM is an inte-
grated development environment (devel-
oped at the University of North Carolina
- Charlotte [UNCC] and available for use)
for ontological engineering processes with
functionalities to create, browse, access,
query, and visualize associated ontologies.
GenOM is compatible with the Web
Ontology Language representation [8] and
is associated with an inference engine that
supports reasoning upon the ontological
concepts and relationships modeled in its
knowledge bases.

Metrics and Measures for
Compliance With
Certification Requirements
For each certification requirement mod-
eled within the requirements hierarchy, the
DITSCAP ontology development also
involves the creation of compliance ques-
tionnaires (representative of various com-
pliance metrics) with well-defined answer
options (representative of compliance
measures). These questionnaires systemat-
ically gather evidences for the target infor-
mation system to determine its eligibility
for DITSCAP certification. Utilizing
DITSCAP-related guidance documents
and domain expertise, we establish the cri-
teria addressed by questionnaires.
Responses to these questionnaires are
gathered by consulting various sources
related to the target information system
such as users, operating manuals, plans,
architecture diagrams, or through network
monitoring tools and scripts. These
responses establish the extent to which
the higher-level requirements categories in
the requirements hierarchy are satisfied
through specific policies, procedures, or
technical rationales in the actual environ-

22 CROSSTALK The Journal of Defense Software Engineering December 2006

1

OMB Circular A-130 Appendix III

Requirement from Section 3.a.c:

“Screen individuals who are authorized to bypass significant technical and

operational security controls of the system commensurate with the risk and

magnitude of harm they could cause.”

2

DoDD 8500.1 Information Assurance

Requirement from Section 4.8:

“Access to all DoD information systems shall be based upon a demonstrated need-to-know, and granted in accordance with

applicable laws and DoD 5200.2 R for background investigations, special access, and IT position designations and requirements.”

3

DoDD 8500.2 Information Assurance Implementation

Requirement from Section E3.4.8:

“Users with user role Information Assurance (IA) Officer (with IA administrative privileges) who have IA Management Access to DoD

Unclassified Information System should have an Investigation Level SSBI if they are a US Civilian/US Military/US Contractor.”

4

DoD 5200.2-R Personnel Security Programs

Requirement from Section AP1.1.1.2:

“Single Scope Background Investigation (SSBI): Checks on subject and spouse/cohabitant

of investigative and criminal history files of the Federal Bureau of Investigation, including

submission of fingerprint records on the subject and other such national Agencies.”

FEDERAL LAW DOCUMENTS (GENERIC REQUIREMENTS)

DoD and DoN POLICIES/INSTRUCTION AND NIST DOCUMENTS (DOMAIN SPANNING REQUIREMENTS)

DoD and DoN POLICY IMPLEMENTATION DOCUMENTS (SUB-DOMAIN REQUIREMENTS)

IDENTIFIED CONCEPTS AND PROPERTIES

FROM REQUIREMENT DESCRIPTIONS

• Personnel Security (Concept)
|_
> Screen Individual (Sub-Concept)

 Properties:
 _

> Source: OMB Circular A-130 Appendix III
 _

> Type of Agency: Federal
 _

> Type of Applicable System: All Systems

LEGEND MEANING

Refers to key concepts that are identified from Security Requirements.

“comply_to” relationship between a security requirement and other requirements it needs to comply with.

“specific_to” relationship between policies enforced through requirements and their specific realization guidance.

“realized_by” relationship between a security requirement and other requirements that it depends upon to realize itself.

Refers to keywords in requirements descriptions which help to identify related requirements.

Figure 1: Extraction of Security Requirements, Categories, Properties, and Their Interdependencies
From DITSCAP-Related Guidance Documents

Figure 2: A Partial Requirements Hierarchy

Requirements as Enablers for Software Assurance

ment. The questionnaires introduce uni-
formity in the evaluation of security
requirements while avoiding subjective
interpretations of certification require-
ments compliance criteria.

The compliance information gathered
for DITSCAP certification requirements
can also be interpreted in terms of other
models within the DITSCAP ontology.
The natural language descriptions of
DITSCAP security requirements embody
concepts which help in establishing these
relationships. From requirements descrip-
tions we identify concepts related to stake-
holders in the viewpoints hierarchy; C&A
process goals in the goal hierarchy; risk
factors of threat, vulnerabilities, counter-
measures, assets, and mission criticality in
the risk assessment taxonomy; and actual
system characteristics captured through
the network-based information discovery
taxonomy. Such relationships for the
DITSCAP certification requirement of
Enclave Boundary Defense with other con-
cepts within the DITSCAP ontology are
visualized in Figure 3. Such explicitly
modeled relationships have also helped in
perceiving the operational risks based on
the level of compliance of the target
information system with DITSCAP secu-
rity requirements [9].

Benefits of Our Approach
Our approach for DITSCAP security
requirements modeling and analysis has
many of the following potential benefits:

• A reusable and configurable repository
of certification requirements, policies,
and directives. This gives users the
ability to map and reflect the appropri-
ate language of existing requirements
applicable to their agency.

• Intuitive Graphical User Interfaces can
be supported through the DITSCAP
ontology to guide C&A process activi-
ties.

• Currently, no systematic methods exist
to collect information related to the
compliance level of certification re-
quirements. Additionally, a long and
exhaustive task of gathering require-
ment compliance criteria from the tar-
get system results in a subjective and
ad-hoc C&A process. To address these
issues, an ontology-driven methodolo-
gy to gather compliance information
using well-defined questionnaires
(metrics and measures) for certifica-
tion requirements provides objective
and uniform criteria to facilitate cost-
effective decision making.

• The information gathered about the
target information system through the
requirements compliance question-
naires can be transformed into the
required form of documentation for
reuse across multiple software assur-
ance initiatives, saving costly rework.

• The hierarchical representation of
DITSCAP ontology provides the flexi-
bility of communicating compliance
results at different levels in the organi-

zation and sharing them among agen-
cies based on a common understanding.

• Reducing the certification costs due to
the need of fewer resources to con-
duct, manage, and maintain C&A
activities. Efficient C&A activities can
significantly reduce the development
and deployment time of more reliable
information systems.

Current Status, Challenges
and Next Steps
Through our efforts, a prototype
DITSCAP automation tool has been
developed. We are currently in the process
of outlining a case study designed research
methodology where a group of experts
perform C&A activities with and without
using the DITSCAP ontology and related
tool support. The results of this case study
with evaluation metrics and measures will
eventually serve as a basis for establishing
the benefits of our approach.

We realize that based on the given tar-
get information system, it is essential to
discover links among non-functional certi-
fication requirements which may originate
from different dimensions, but are neces-
sary to collectively ascertain overall reliable
emergent software behavior. Although such
links cannot be anticipated or formalized for
all situations, we will explore ways to utilize
the traceability offered within the DITSCAP
ontology to help experts gradually hypothe-
size more meaningful relationships among

December 2006 www.stsc.hill.af.mil 23

Enclave Boundary Defense

Include IDS and firewall at key points in the enclave

Questionnaire

1. Are adequate boundary defense mechanisms in place?

 Answer Options (Choose one):

 1. Firewalls and network intrusion detection systems (IDS) are deployed at the

 enclave boundary and at internal key points.

 2. Firewalls and network intrusion detection systems (IDS) are deployed at the

 enclave boundary.

 3. Boundary defense mechanisms are not in place.

2. Are adequate internet proxies in place?

 Answer Options (Choose one):

 1. All Internet access is proxied through Internet access points that are under the

 management and control of the enclave and are isolated from other DoD

 information systems.

 Demilitarized zones are implemented.

 2. Internet access is proxied but not necessarily isolated from other DoD systems.

 Demilitarized zones are implemented.

 3. Internet access is not proxied.

3. Are the software used for Firewall and Intrusion Detection System approved

 by the National Security Agency (NSA) approved processes like Common Criteria?

 Answer Options (Choose one):

 1. Yes 2. No

Question/risk information sources: Question 1-2 are from the elaborations of the

current security requirement based upon subject-matter expertise. Question 3 is from

the related requirement of Acquisition standards (DCAS-1) and Specified robustness

(DCSR-1) identified based upon requirements.

NETWORK

CONTROLS

RELATED GOALS

REQUIREMENT SOURCE

C&A Goal: Leaf node

(Define System Interfaces)

SECURITY REQUIREMENTS

UNDER ANALYSIS

DoD 8500.1 Information

Assurance implementation

(Requirement Source)

Security Requirement: Acquisition

Standards (Software Acquisition)

Are adequate proxies in place?

(Requirement-leaf-node-

Compliance questionnaire)

Are adequate boundary defense

mechanisms in place?

(Requirement-leaf-node-

Compliance questionnaire)

Is the software used for Firewall and

Intrusion Detection System approved by

NSA- approved processes like

Common Criteria? (Requirements leaf

node-Compliance questionnaire)

COMPLIANCE QUESTIONS

Viewpoint: IA

Officer (Authorities)

RELATED VIEWPOINTS
Viewpoint: Administrator Personnel

(Privileged user with IA
responsibilities) (Authorities)

Viewpoint:

Confidentiality

(IA Services)

Countermeasure:

Sensitive System

Isolation (Access Control)

Countermeasure:

Internet Access Rules

(Access Control)

COUNTERMEASURES

Countermeasure: Boundary

Defense Mechanisms

(Exchange of information and software)

Vulnerability: Firewall

Misconfigurations

VULNERABILITES

Vulnerability: Internet Proxy

Misconfigurations

Threat: Malicious Network

Penetrations (Cyber Threat)

THREATS

Threat: Unauthorized

Access (Cyber Threats)

Security Requirement: Instant

Messaging (Network Controls)

Security Requirement: Public WAN

Connection (Network Controls)

Security Requirement: Outsourced application subject

to DoD enclave boundary defense (Network Controls)

Security Requirement: Voice Over

IP (Network Controls)

RELATED REQUIREMENTS

Security Requirement:

Enclave Boundary Defense

(Network Controls)

re
la

te
d

_
to

re
la

te
d
_
to

re
la
te

d
_t

o

re
la

te
d_to

related_to

driven_by

driven_by

prevents

preventssuggests

su
g
g
ests

s
u
g
g
e
s
ts

p
ro

v
id

e
s

re
la

te
d
_
S
ta

k
e
h
o
ld

e
r

re
la

te
d_Sta

kehold
er

has_compliance_questionnaire

has_compliance_questionnaire

has_compliance_questionnaire

applies_to

fro
m

_so
u
rce

Figure 3: Visualization of a DITSCAP Security Requirement and Its Relationships With Other Concepts

Requirements Engineering

non-functional certification requirements
while understanding their consequences on
the overall dependable behavior of the tar-
get information system.

Due to the nature of the ontological
engineering, currently the DITSCAP
ontology has been constructed manually
using frequent feedback and refinement
from experts. We also explore techniques
for automatically processing natural lan-
guage guidance documents and identify
ontological concepts that experts can
refine further.

Reaching Out
In general, our approach helps in captur-
ing the characteristics of information pre-
sent sparsely in documents and the way
these characteristics can be represented
using ontological modeling processes to
infer valuable knowledge that assists deci-
sion making activities. Hence, we contend
that our methodology can be favorably
extended to non-DITSCAP uses (e.g.
Federal Information Security Manage-
ment Act, NIST, Common Criteria, or the
Health Insurance Portability and
Accountability Act) where the decision
making activities require sifting through
large volumes of information.

Our research efforts seamlessly com-
plement the migration from DITSCAP to
DoD Information Assurance Certification
and Accreditation Process (DIACAP) for
future DoD endeavors of the Global
Information Grid and net-centric dynam-
ic C&A [10]. The DIACAP Enterprise
Mission Assurance Support System that
standardizes approaches for describing
and collecting data for C&A can leverage
the benefits of an ontological representa-
tion of security requirements to promote
uniformity, reusability, and portability, as
well as the sharing of results from C&A
activities. The DITSCAP ontology also
facilitates the interpretation of results
from network monitoring tools and
scripts in terms of their impact to compli-
ance with certification requirements, pro-
viding interesting research directions for
the DIACAP Vulnerability Assessment
Management Service.u

Acknowledgement
This work is partially supported by the
grant from the Critical Infrastructure
Protection Center, Space and Naval
Warfare Systems Center, Charleston,
South Carolina.

References
1. DoD. “DoD 5200.40. DITSCAP.”

Dec. 1997 <www.dtic.mil/whs/direc
tives/corres/html/520040.htm>.

2. DoD. “DoD 8510.1-M, DITSCAP.”
Application Manual. 2000 <www.
dtic.mil/whs/directives/corres/html/
85101m.htm>.

3. Davis, T. “No Computer System Left
Behind: A Review of the 2005 Federal
Computer Security Scorecard.” Press
Release. Government Reform Com-
mittee, 2005 <http://reform.house.
gov/UploadedFiles/TMDFISMA06
Opener.pdf> .

4. Swartout, W. and A. Tate. “Ontol-
ogies.” IEEE Intelligent Systems 141.
(1999): 18-19.

5. Lee, S., D. Muthurajan, and R. A.
Gandhi, et al. “Building Decision
Support Problem Domain Ontology
From Natural Language Requirements
for Software Assurance.” International
Journal on Software Engineering and
Knowledge Engineering (2006).

6. Lee, S.W., R.A. Gandhi, and Gail-Joon
Ahn. “Certification Process Artifacts
Defined as Measurable Units for
Software Assurance.” International
Journal on Software Process: Improve-
ment and Practice (2006).

7. Lee, S.W., and D. Yavagal. “GenOM
User’s Guide Vers. 2.0.” Technical
Report TR-NiSE-05-05. Knowledge
Intensive Software Engineering Re-

search Group. Dept. of Software and
Information Systems: UNCC, 2005.

8. McGuinness, D., and F. van Harmelen,
Eds. “OWL Web Ontology Language
Overview.” W3C Recommendation,
2004 <www.w3.org/TR/owl-features/>.

9. Lee, S.W., R.A. Gandhi, and G.J. Ahn.
“Security Requirements Driven Risk
Assessment for Critical Infrastructure
Information Systems.” Proc. of the
Symposium on Requirements Engi-
neering for Information Security
(SREIS 05), 2005.

10. Turner, G., P. Holley, E.J. Mehan, and
M. Colon. “Net-Centric Assured In-
formation Sharing – Moving Security
to the Edge Through Dynamic
Certification and Accreditation.” IA
Newsletter 8.3 (Winter 2005/2006).

Notes
1. DITSCAP is currently undergoing a

migration to the DoDI 8510.bb, DIA-
CAP. However, it does not affect the
utility of the approaches outlined in
this article.

2. Although we address our approach in
the context of the DON, our tech-
niques are generally applicable to C&A
standards for other agencies.

24 CROSSTALK The Journal of Defense Software Engineering December 2006

About the Authors

Robin Gandhi is pursu-
ing a doctorate in infor-
mation technology and
has been a research assis-
tant in the Department
of Software and Infor-

mation Systems at UNCC since 2003.
His research interests include require-
ments engineering, knowledge-intensive
software engineering, and ontology-
based object-oriented domain modeling
and analysis. Gandhi received his under-
graduate degree in electronics engineer-
ing from Sardar Patel University, India,
and his Master of Science in computer
science from UNCC.

Both authors can be reached at:
Department of Software and
Information Systems
UNCC
9201 University City BLVD
Charlotte, NC 28223-0001
Phone: (704) 687-8662/8385
Fax: (704) 687-4893
E-mail: seoklee@uncc.edu,

rgandhi@uncc.edu

Seok-Won Lee, Ph.D.,
is an assistant professor
of software and informa-
tion systems at UNCC.
Prior to UNCC, he was
affiliated with Science

Applications International Corporation
and the IBM T.J. Watson Research
Center. Lee’s areas of specializations
include software engineering and knowl-
edge engineering with specific expertise
in ontology-based requirements engi-
neering, knowledge acquisition, and
machine learning. Lee is currently focus-
ing on new research in the areas of
knowledge-intensive software engineer-
ing, software evaluation research, object-
oriented domain modeling and their
applications to information security and
assurance. He holds a master’s degree in
computer science from the University of
Pittsburgh and a doctorate in informa-
tion technology from George Mason
University.

December 2006 www.stsc.hill.af.mil 25

Developing secure software requires
engineering and management attention,

as well as extra effort and resources. Rather
than being treated as an add-on, security must
be built in throughout the software life cycle,
using a mixture of good software engineer-
ing practices (to ensure quality software in
general) and good security practices (to
ensure that exploitable vulnerabilities are not
present). Integrating security practices with
software engineering practices throughout
the development process helps an organiza-
tion anticipate security failures and develop
software that can sustain attacks.

Currently, the predominant method for
finding vulnerabilities is to penetrate and patch.
This approach focuses most of the effort on
the latter stages of the software life cycle, e.g.,
testing for a set of known vulnerabilities or
waiting for a vulnerability to be exploited in
delivered code. Only after such a vulnerabili-
ty is found does the development team mod-
ify the software to address that vulnerability
[1]. The effectiveness of this approach is
highly correlated with the quality of the test-
ing activities. An experienced tester can be
quite effective, but an inexperienced tester
can miss many important issues.

As evidence of the problems associated
with testing for security vulnerabilities,
although sensitivity to and focus on security
problems has increased in recent years, the
number of software vulnerabilities found in
deployed software has actually increased –
not decreased. For example, according to the
United States Computer Emergency
Readiness Team (US-CERT), the number of
new vulnerabilities discovered in software
has been growing at rates close to 140 per-
cent, recently in excess of 5,000 per year.
Other vulnerability collections show similar
trends – e.g., the National Vulnerability
Database has nearly 13,000 documented vul-
nerabilities, and Bugtraq, a moderated mail-
ing list where vulnerabilities are reported and
discussed, holds discussions on about 400
items per month. These figures make it clear
that there is a national need to better address

software security.
An improvement over this penetrate and

patch mentality is to build security in from the
beginning of the product lifecycle [2, 3].
Governmental organizations like the
Department of Homeland Security (DHS)
have already realized the benefits of this
approach and are promoting research to
make it happen. Standard software engineer-
ing approaches for building in software qual-
ity provide some insight into building in secu-
rity. Traditionally, software engineering has
defined a defect as an error, fault, or failure in
the software system or its related artifacts.
Security vulnerabilities are a special type of
these more general software engineering
defects and therefore benefit from similar
detection and removal approaches.

Although no concrete guidelines exist,
there is a growing recognition that early life-
cycle issues do play an important role in the
development of secure software. Problems
in the early life-cycle phases have caused
some costly and highly visible problems lead-
ing to untrustable systems. A well-publicized
example of this type of problem was the
theft of personal data from a database of
background files on most American citizens
maintained by the ChoicePoint corporation.
The theft of data occurred when criminals
set up fake companies (e.g. debt collectors,
insurance agencies) and gained access to
ChoicePoint’s databases [4]. This security vul-
nerability can be viewed as a requirements
and design problem. Had the creators of the
software included requirements for verifying
the legitimacy of a company prior to allowing
access to private information, this theft could
have likely been prevented.

Security experts have also clearly recom-
mended the need for early life cycle work to
address security vulnerabilities [5]. All of this
evidence combines to create a powerful mes-
sage: Although often ignored, decisions
made (or missed) in the early life cycle have a
large impact on the level of security achiev-
able in the final system.

This message is quite familiar to software

engineers. Software engineering practitioners
and researchers have observed (and mea-
sured) that the earlier defects are found in the
software life cycle the easier and cheaper they
are to repair [6]. Many software engineering
best practices are concerned with how to
apply early life-cycle verification and valida-
tion (V&V) practices to build quality in
throughout the life cycle rather than test it in
during late life-cycle testing phases. Viewing
security vulnerabilities as a special type of
defect allows for building security into sys-
tems in the same way as building quality into
systems. The ultimate goal is to integrate the
best practices from the security engineering
and software engineering communities into a
set of techniques for identifying and remov-
ing security vulnerabilities early in the soft-
ware life cycle. This article illustrates the
adaptation of one such technique, PBR, to
address the security vulnerability problem
during a requirements inspection process.

An Early Life-Cycle Approach to
Security
A large number of software engineering
studies have established inspections as an
effective method for reducing defects in soft-
ware systems [6]. An inspection is a static
review process in which a software artifact
(e.g. requirements document, design docu-
ment, or code) is reviewed by one or more
inspectors to verify that it meets a set of qual-
ity properties. Companies like Microsoft have
recognized the potential reduction of vulner-
abilities that inspections can cause in the early
life-cycle phases and have created their own
checklists focused on early life-cycle issues.

One of the most successful examples of
inspection use came from the Software
Engineering Laboratory (SEL) at NASA’s
Goddard Space Flight Center. Figure 1 (see
page 26) illustrates the impressive reduction
in defect rates (per thousand developed lines
of code [DLOC]) achieved on software pro-
jects over a nineteen year period at the SEL.
This chart shows sustained continuous
improvement over a long period of time in an

Finding and Fixing Problems Early:A Perspective-Based
Approach to Requirements and Design Inspections

Dr. Forrest Shull and Dr. Ioana Rus
Fraunhofer Center for Experimental Software Engineering

Viewing security vulnerabilities as a specific type of software defect allows proven software engineering techniques for finding
and fixing them to be used early in the development of the product. Finding and fixing these problems early (i.e. at the require-
ments or design phase) will reduce the overall risk and cost of the product. This article describes the application of a previ-
ously successful early life cycle software inspection approach (perspective-based reading [PBR]) to the problem of software secu-
rity. Excerpts from this tailored approach are provided along with guidance on it use.

Dr. Jeffrey C. Carver
Mississippi State University

Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering December 2006

organization that built real-time software sys-
tems to support safety critical missions cost-
ing millions of dollars. Although much effort
was spent on software quality improvement
at Goddard during this time period, Frank
McGarry and Mike Stark, two former direc-
tors of the SEL, have both credited the intro-
duction and maintenance of inspections as
being the most important factor in the error
rate reduction.

One of the difficulties in performing
early life-cycle reviews is the amount of
human judgment required. Static analysis
tools do exist, but these tools focus mainly
on code. Early life-cycle V&V by its very
nature is human intensive: Identifying and
predicting the impacts of requirement or
design decisions is not easily amenable to an
automated checking approach. To be done
effectively, these tasks require the experience
and knowledge necessary to make good judg-
ment calls. For security problems, this means
that security expertise is essential, but often,
lacking in software engineers. Therefore, a
mechanism is needed to supplement the soft-
ware engineers’ knowledge with security spe-
cific knowledge. PBR is a technique that can
be used for encoding and transferring securi-
ty-relevant expertise.

A Tailorable, Perspective-Based
Approach
Perspective-based inspection is a variant of a
formal technical review, which provides a
useful framework for integrating security
concerns. This type of inspection is based
on explicitly defining the important stake-
holders for a particular artifact and the types
of issues that are of importance to the team.
Rather than asking each reviewer to search
for all types of problems, the perspective-
based approach requires inspectors to exam-
ine the document using a role-based scenario
based on how one specific stakeholder

would use the document to build the system.
For example, an inspection of system
requirements includes an inspector using a
tester perspective. This inspector reviews the
requirements by following a scenario in
which he/she considers how to generate test
cases based on the requirements. Any time
the inspector experiences difficulty in using
the document to complete his scenario he
records this difficulty as an issue that must
be fixed. This list of issues then becomes the
list of items that is returned to the author of
the document for repairs.

The set of appropriate stakeholders and
issue types must be tailored for different
environments. In this sense, the perspective-
based approach provides a set of guidelines
for creating an effective, tailored inspection
technique, not a one-size-fits-all process.

By emphasizing the stakeholders, the per-
spective-based approach provides a helpful
way to make the need for collaboration
between software and security engineers
explicit. Each of these roles must be repre-
sented by at least one inspector on the review
team. This approach is also useful when it is
not possible to get an inspector with suffi-
cient security expertise to participate in the
inspection process. Creating a scenario based
on the way each stakeholder uses the docu-
ment captures that stakeholder’s expertise
about early life-cycle indicators of potential
security vulnerabilities that can be used by
more novice inspectors.

To conduct a perspective-based inspec-
tion, practitioners first need to decide what
documents should be inspected. Inspection
of software-specific documents (like the
requirements specification or design docu-
ment) needs to be augmented with the
inspection of security-specific artifacts (such
as threat models). The goal of the inspection
must be to ensure that the security models
are internally consistent and correct, as well
as that their implications for the system are

adequately reflected in the software work
products, to support construction of a cor-
rect end-product.

For the documents that have been select-
ed, a list of stakeholders must be compiled,
considering the following:
• Stakeholders in downstream phases who need

the document to perform their own job.
Related to security, the following are
some examples: testers, who need to
ensure that security requirements are
clearly stated in terms of their expected
behavior and the functionalities to
which they should be applied; designers
and/or developers, who need to ensure
that security policies are specified in
enough detail to allow for correct imple-
mentation; and users, who need to
ensure that the final behavior of the sys-
tem, including all security policies, will
meet their needs.

• Stakeholders from previous phases who want
to ensure that their decisions relevant to
system design are adequately reflected in
the document. Related to security, an
important stakeholder is the developer of
threat models and other early life-cycle
security artifacts, who needs to ensure
that the behavior identified by these
models is in the system artifacts.

• Stakeholder’s specific types of expertise need to
be correctly reflected in the software
work documents. An important security-
related perspective is a black hat user who
focuses specifically on issues that could
lead to exploitable security vulnerabilities
and increases the risk of a successful
attack on the software.
For each perspective identified, a scenario

that reflects the normal day-to-day work
activity of the respective stakeholder must be
created. Different stakeholders’ scenarios
require the inspectors to focus on different
aspects of the document, while the entire set
of perspectives covers the whole artifact. By
focusing each reviewer on a separate task, the
overlap among the responsibility of various
inspectors is reduced. At the same time, the
importance and necessity of the role played
by each inspection member increases because
no two reviewers focus on the same set of
defects. This approach combats the assump-
tion that simply having more eyes on a docu-
ment increases the chances of finding prob-
lems. In reality, we find the opposite to be
true: Having more people look at the same
document without a specific focus allows
each inspector to assume that his/her exper-
tise and time are not crucial, and that some-
one else will find any problems they miss.
This is a potentially dangerous assumption.

Our previous experiences in organiza-
tions such as NASA have shown perspective-
based inspections to be especially useful for

0

2

4

6

8

10

12

14

16

ISEEB

WINDDV

DEA

SEASAT

MAGBIAS

DEDET
GROSIM

MAGSAT

DERBY

ERBS

DEB
FOXPRO

SMM

PAS
ISEEC

GSOC

DESIM

COBEDS

GROSS

GRODY

UARSDSIM

GMASUI

WINDPOPS

GOESAGSS

GOFOR

COBEAGSS
ASP

ADEAS

GROAGSS FDASF

BBXRT

GOADA
UARSTELS UARSAGSS

TONSIBM

GOESIM

SAMPEXTS

EUVEAGSS

EUVETELS

EUVEDSIM

SAMPEX
FASTELS

AEM

GROHUD SOHOAGSS

TOMSTELS TOMSAGSS
FASTAGSS

SOHOTELS

XTEA

SW SS

SWASXTLS

19961976 1978 1980 1982 1984 1986 1988 1990 1992 1994

Project Midpoint

Ada Projects

FORTRAN Projects

0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

12

14

16

ISEEB

WINDDV

DEA

SEASAT

MAGBIAS

DEDET
GROSIM

MAGSAT

DERBY

ERBS

DEB
FOXPRO

SMM

PAS
ISEEC

GSOC

DESIM

COBEDS

GROSS

GRODY

UARSDSIM

GMASUI

WINDPOPS

GOESAGSS

GOFOR

COBEAGSS
ASP

ADEAS

GROAGSS FDASF

BBXRT

GOADA
UARSTELS UARSAGSS

TONSIBM

GOESIM

SAMPEXTS

EUVEAGSS

EUVETELS

EUVEDSIM

SAMPEX
FASTELS

AEM

ROHUD SOHOAGSS

TOMSTELS TOMSAGSS
FASTAGSS

SOHOTELS

XTEA

SW SS

SWASXTLS

ISEEB

WINDDV

DEA

SEASAT

MAGBIAS

DEDET
GROSIM

MAGSAT

DERBY

ERBS

DEB
FOXPRO

SMM

PAS
ISEEC

GSOC

DESIM

COBEDS

GROSS

GRODY

UARSDSIM

GMASUI

WINDPOPS

GOESAGSS

GOFOR

COBEAGSS
ASP

ADEAS

GROAGSS

COBSM

FDASF

GOADA
UARSTELS UARSAGSS

TONSIB

POWITS

GOESIM

SAMPEXTS

EUVEAGSS

EUVETELS

EUVEDSIM

SAMPEX
FASTELSFASTELFASTFASTELS

AEM

ROHUD SOHOAGSS

TOMSTELS TOMSAGSS
FASTAGSS

SOHOTELS

XTEAGSS

SWASAGSS

SWASXTLS

19961976 1978 1980 1982 1984 1986 1988 1990 1992 1994 19961976 1978 1980 1982 1984 1986 1988 1990 1992 1994

Project Midpoint

Ada Projects

FORTRAN Projects

Development Error Rates (1976-1995)

Each data point represents

one software project.

Figure 1: Demonstrated Defect Reduction in Errors per 1,000 DLOC at NASA’s SEL

December 2006 www.stsc.hill.af.mil 27

Finding and Fixing Problems Early:A Perspective-Based Approach to Requirements and Design Inspections

helping bring novice reviewers up to speed,
by giving them a clear direction of how to get
started on their analysis of the document,
and by giving them a clear subset of con-
cerns to focus on rather than having to wear
all the hats. Perspective-based inspections
were evaluated at Goddard with a controlled
experiment comparing different approaches
for reviewing requirements specifications.
Using the perspective-based approach
allowed individual reviewers to find up to 30
percent more defects, on average, than when
they used the standard NASA review
approach. When team results were statistical-
ly simulated from the individual data, teams
using perspectives also found up to 30 per-
cent more defects than teams using the stan-
dard NASA approach. These differences
were statistically significant [7].

This study has been replicated multiple
times with similar results. A series of other
studies provide support for the benefits of
using a perspective-based approach for
inspections of different types of artifacts and
different organizations:
• A study conducted at Lucent Technolo-

gies indicated that inspection teams using
perspectives to find defects in formal
requirements models were significantly
more effective than teams using only
checklists or unstructured techniques [8].

• A study at a U.S. government organiza-
tion in 1998 showed that teams found
about 30 percent more usability problems
in Web interfaces when using a perspec-
tive-based inspection approach [9].

• A study of German software profes-
sionals from various companies produc-
ing object-oriented designs showed that
teams using the perspective-based
approach found 41 percent more
defects than teams using only checklists,
and the cost per defect was significantly
lower [10].

• A study of code inspections at Bosch
Telecom in Germany indicated that
teams using perspectives were more
effective at finding defects than teams
using the baseline inspection approach
with the improvement being statistically sig-
nificant in two of the three experimental
runs. The cost per detected defect was
also significantly lower for the perspec-
tive-based approach in all runs [11, 12].

• A study of object-oriented design inspec-
tions at Ericsson in Sweden showed that
teams using perspectives found more
defects than those using their usual
approach, although the perspective-based
inspections took more time [12].

Tailoring Perspective-Based
Reading for Security

Based on the previous proven success of
using the perspective-based approach to find
generic software quality defects, we have tai-
lored this approach to focus on software
security. In this paper, we describe a set of
perspectives for a requirements inspection.
To perform this tailoring, we augmented two
of the standard PBR perspectives (the design-
er and the tester) with additional security spe-
cific questions. In addition, we created a new
perspective based on the needs of a black hat
tester. The remainder of this section briefly
describes each technique.

The designer perspective has the goal of
ensuring that there is enough, consistent
information present in the requirements to
successfully create a system design. The exist-
ing scenario is augmented with questions that
focus on whether important security-related
information has been correctly specified
rather than being left up to the designer, who
may not be familiar with all details of the
security policy. Examples of the new ques-
tions that the reviewer using the designer per-
spective should consider when following this
perspective include the following:
• Have the requirements specified enough

information about the security policies
for the designer to understand whether a
layered security policy is required instead
of a single point of vulnerability?

• If several administrator roles are defined,
have they been defined as separate
accounts with limited access to security
resources, or a single account with com-
prehensive super user permissions?
In a similar fashion, the scenario for

the tester perspective remains unchanged,
but is augmented with security specific
questions. The inspector using the tester
perspective has the goal of ensuring that
the trustworthiness of the system will be
knowable during the testing phase.
Examples of the new questions that the
reviewer using the tester perspective
should consider include the following:
• Have the requirements specified appro-

priate exception-handling functionality?
• Have the requirements specified ade-

quate safeguards that would take effect
once a malicious user has gained unau-
thorized access to the system?

• Does the system have a well-defined sta-
tus, either a secure failure state or the start
of a plausible recovery procedure, after a
failure condition?
Finally, the black hat perspective is a new

one (i.e. not tailored from the previous set of
perspectives) which focuses the reviewer on
finding weaknesses in the requirements that
could be exploited via an attack. The scenario
that the reviewer follows is to create a set of
malicious attack scenarios that seek to exploit
system vulnerabilities. While creating this sce-

nario, the reviewer focuses on three types of
information relevant at the requirements
stage: Cryptography, Authentication/Auth-
orization, and Data Validation. These types
of information, along with the related ques-
tions were adapted for requirements from
Araujo and Curphey’s article on Security
Code Reviews [13].

Cryptography relates to the encoding mech-
anisms specified for data items within the
system. During the review, the inspector is
looking for underspecified or incorrectly
specified features that could be exploited.
Example questions include the following:
• Can the encoding mechanisms specified

for transmission and storage of data be
broken?

• Do the cryptographic mechanisms speci-
fied follow well-known, well-document-
ed, and publicly scrutinized algorithms,
and if not, can they be easily broken?
Authentication/Authorization focuses the

reviewer on determining how unauthorized
users could gain access to the system.
Example questions include the following:
• Can the protocols for validating user

identity be broken?
• If account lockout is specified, are there

requirements in place to prevent denial-
of-service attacks?

• Can user privileges be artificially elevated
due to omissions or poorly specified
requirements?
Data Validation is an important source of

security vulnerabilities and focuses the
reviewer on determining whether invalid data
could be entered into the system. An exam-
ple question: Do the requirements leave any
opportunities for invalid data to be entered
by the lack of validation of external data?

These excerpts from the requirements
review techniques illustrate that formulating
inspection methods must fully leverage the
intelligence and flexibility of the human
beings involved in the procedure. As much as
possible, inspectors should avoid using algo-
rithmic heuristics that would be candidates
for tool support instead (for example, keep
coupling low by ensuring that no class calls
more than six others). Rather, inspectors
should be given tasks that require both
semantic understanding of the system and
judgment calls. The flexibility of such an
approach allows inspectors to focus both on
bad things that should be avoided (excessive
coupling) and good things that are omitted
(exception handling for appropriate func-
tionalities). Similar ideas can be incorporated
into the reviews of the threat models, archi-
tecture and design documents by adding sim-
ilar questions specific to each artifact.

Conclusions
The decisions made in early life-cycle devel-

28 CROSSTALK The Journal of Defense Software Engineering December 2006

Software Engineering Technology

About the Authors

Dr. Forrest Shull is a
senior scientist at the
Fraunhofer Center for
Experimental Software
Engineering, Maryland
(FC-MD). At FC-MD he

is project manager and member of the
technical staff for projects with clients
that have included Fujitsu, Motorola,
NASA, and the U.S. Department of
Defense. He is responsible for research
projects in the areas of software defect
reduction and software practice evalua-
tion. He received his doctorate degree
from the University of Maryland,
College Park.

Fraunhofer Center for
Experimental Software
Engineering Maryland
University of Maryland
4321 Hartwick RD STE 500
College Park, MD 20742-3290
Phone: (301) 403-8970
Fax: (301) 403-8976
E-mail: fshull@fc-md.umd.edu

Dr. Jeffrey Carver is an
Assistant Professor in the
Computer Science and
Engineering Department
at Mississippi State Uni-
versity. His research

interests include software process
improvement, software quality, software
inspections, and software engineering for
high performance computers. Carver’s
research has been funded by the U.S.
Army Corps of Engineers, the U.S. Air
Force, and the National Science
Foundation. He received his doctorate
from the University of Maryland in
2003.

Department of Computer
Science and Engineering
300 Butler Hall
Box 9637
Mississippi State University, MS
39762
Phone: (662) 325-0004
Fax: (662) 325-8997
E-mail:carver@cse.msstate.edu

Dr. Ioana Rus is a scien-
tist at the FC-MD where
she serves as a technical
area lead for safety and
security. Rus has repre-
sented FC-MD as a

member of the Software Assurance
Processes and Practices Working Group
and as a reviewer for the DHS Software
Assurance Common Body of Knowl-
edge. She received her doctorate from
Arizona State University.

Fraunhofer Center for
Experimental Software
Engineering Maryland
University of Maryland
4321 Hartwick RD STE 500
College Park, MD 20742-3290
Phone: (301) 403-8971
Fax: (301) 403-8976
E-mail: irus@computer.org

opment phases have a large impact on
whether secure systems are achievable or
not. Just as for other types of quality
issues, early life-cycle V&V activities can
detect and repair security issues early on,
for example, by checking that security
requirements are well thought-out, feasi-
ble, and consistent with user needs; that
system architectures exhibit good design
principles, making them easier to maintain
and fix without introducing vulnerabilities;
or that components are designed so that if
security measures are breached in one
component, an attacker gains access only
to a limited part of the system. Also, as for
other types of quality issues, finding secu-
rity problems early saves time and effort
for the development team by avoiding the
need to fix the many downstream docu-
ments that instantiate early decisions.

A perspective-based inspection, as
illustrated in this article, is one approach
which has been very effective at early life
cycle defect detection and can be used to
tailor V&V techniques to focus on securi-
ty. While other approaches are certainly
possible, the explicit reliance of the per-
spective-based approach on the needs of
the stakeholders gives practitioners a way
to bring the right expertise to bear and
capture best practices so they can be
employed by a larger set of inspectors.u

References
1. McGraw, G. “Building Secure Soft-

ware: Better Than Protecting Bad
Software.” IEEE Software 19.6 (2002):
57-58.

2. Beaver, K. and Sima, C. “Software De-
velopment: Building Security In.”
Security.itworld. 5 Sept. 2006.

3. Grance, T., Hash, J., and Stevens, M.
“Security Considerations in the Infor-
mation System Development Life
Cycle.” NIST Special Publication 800-
64, 2004.

4. Sullivan, B. “Data Theft Affects
145,000 Nationwide.” MSNBC. 18
Feb. 2005.

5. McGraw, G. Software Security:
Building Security In. Addison-Wesley
Professional, 2006

6. Shull, F., et al. “What We Have
Learned About Fighting Defects.”
Proceedings of IEEE Symposium on
Software Metrics. 2002.

7. Basili, V., et al. “The Empirical
Investigation of Perspective Based
Reading.” Empirical Software Engi-
neering – An International Journal 1.2
(1996): 133-164.

8. Porter, A. and Votta, L. “Comparing
Detection Methods for Software Re-
quirements Inspections: A Replication
Using Professional Subjects.” Empir-

ical Software Engineering – An Inter-
national Journal 3.4 (1998): 355-379.

9. Zhang, Z., Basili, V., and Shneiderman,
B. “Perspective-Based Usability In-
spection: An Empirical Validation of
Efficacy.” Empirical Software Engi-
neering – An International Journal 4.1
(1999): 43-70.

10. Laitenberger, O., Atkinson, C., Schlich,
M., and El Emam, K. “An Experi-
mental Comparison of Reading Tech-
niques for Defect Detection in UML
Design Documents.” Journal of Sys-
tems and Software 53.2 (2000):183-204.

11. Laitenberger, O., El Emam, K., and
Harbich, T.G. “An Internally Repli-
cated Quasi-Experimental Compari-
son of Checklist and Perspective
Based Reading of Code Documents.”
IEEE Transactions on Software
Engineering 27.5 (2001): 387-421.

12. Conradi, R., et al. “Object-Oriented
Reading Techniques for Inspection of
UML Models – An Industrial Experi-
ment.” Proceedings of European
Conference on Object-Oriented
Programming (ECOOP ’03), Darm-
stadt, Germany, 2003.

13 Araujo, R. and Curphey, M. “Software
Security Code Review: Code Inspec-
tion Finds Problems.” Software
Magazine: July 2005.

December 2006 www.stsc.hill.af.mil 29

TOPIC ARTICLE TITLE AUTHOR(S) ISSUE PAGE

Acquisition

Ada 2005

The Ada 2005 Language Design Process S. Tucker Taft 8 20

Agile Army Simulation Program Balances Agile and

Traditional Methods With Success

LTC John Surdu, Ph.D.,

Douglas J. Parsons

4 4

Architectures DoDAF-Based Information Assurance Architectures Dr. John A. Hamilton, Jr. 2 4

Cooperative Appraisals for Capability and Risk Evaluation Diane A. Glaser, Michael D. Barnett 4 14

Managing Cultural Changes in Your Organization Dr. Kenneth D. Shere 4 9

Change Management

Communication

Estimation

Language

Management

Net-Centricity

Miscellaneous

Ada 2005 Richard L. Conn 8 4

Ada 2005: A Language for High-Integrity Applications Dr. Benjamin M. Brosgol 8 8

Ada 2005 on .NET and Mobile and Embedded Devices Dr. Martin C. Carlisle 8 16

Intuitive Multitasking in Ada 2005 Dr. Bo I. Sanden 8 12

Lessons Learned Using Agile Methods on

Large Defense Contracts

Paul E. McMahon 5 25

A Manager's Guide to Supporting Organizational

Change: 10 Lessons Learned

Esther Derby 1 17

Transforming Cultures: A New Approach to

Assessing and Improving Technical Programs

Hile Rutledge, Jennifer Tucker 1 20

Building Successful Software Development Teams

Using TSP and Effective Communication Networks

Dr. William R. Nichols 1 12

E-Mail Etiquette COL Kenneth L. Alford, Ph.D. 1 16

Safety Check Steven M. Smith 1 10

The Project Charter – Blueprint for Success Chuck McKeever 1 6

What We've Got Here Is Failure to Communicate Alan C. Jost 6 10

Design A Gentle Introduction to Object-Oriented Software Principles Maj. Christopher Bohn, Ph.D.,

John Reisner

10 24

Project Estimation With Use Case Points Roy K. Clemmons 2 18

Software Cost Estimating: A Cyclical Conundrum Ellen Walker 7 Online

Software Estimating Models: Three Viewpoints Dr. Randall W. Jensen,

Lawrence H. Putnam, Sr.,

William Roetzheim

2 23

Maintaining Sanity in a Multilanguage World Val C. Kartchner 8 22

All We Need to Know About Sotware Project Management,

We Can Learn From Watching Star Trek

David R. Webb 10 28

Are Management Basics Affected When Using Agile Methods? Paul E. McMahon 11 4

Becoming A Great Manager: Five Pragmatic Practices Esther Derby 11 9

Leadership, The Final Frontier: Lessons Learned From the

Captains of Star Tre

Paul Kimmerly, David R. Web 10 13

Uncommon Techniques for Growing Effective Technical Managers Paul E. McMahon 11 Online

A Brighter Future From Gallium Nitride Nanowires Dr. Kris A. Bertness,

Dr. Norman A. Sanford,

Dr. Albert V. Davydov

10 9

The Science in Science Fiction's Artificial Men Dr. Dawn MacIsaac,

Dr. Kevin B. Englehart

10 4

What Science Fiction Authors Got Wrong and

Why We're Better Off For It

Maj. Christopher Bohn, Ph.D. 10 Online

When Did Six Sigma Stop Being a Statistical Measure? Joe Schofield 4 28

Development of a Ground Vehicle Maneuver Ontology to

Support the Common Operational Picture

Dr. Paul W. Richmond,

Curtis L. Blais,

Dr. Niki C. Goerger

7 26

From the DoD CIO: The Net-Centric Information Enterprise John G. Grimes 7 4

Information Sharing Is a Strategic Imperative Gen. James E. Cartwright 7 7

The New Java Security Architecture Idongesit, Mkpon-Ruffin,

Dr. John A. Hamilton,

Martin C. Carlisle

7 Online

Overview of the Department of Defense Net-Centric Data Strategy Anthony J. Simon 7 21

Ten Lessons Learned: Data Warehouse Development Project,

California Department of Fish and Game

Crilly Butler, Jr. 10 16

ARTICLE INDEX

VOLUME 18

CONTINUED ON NEXT PAGE

30 CROSSTALK The Journal of Defense Software Engineering December 2006

TOPIC ARTICLE TITLE AUTHOR(S) ISSUE PAGE

Service-Oriented Architectures in Net-Centric Operations Lt. Gen. Charles E. Croom, Jr. 7 13

The Team: Creating the Enabling Capability to

Conduct Net-Centric Operations

Lt. Gen. Robert M. Shea 7 18

Transformational Communications Systems for

DoD Net-Centric Operations

Dr. Troy Meink 7 23

Net-Centricity (continued)

Process Documentation Defining Short and Usable Processes Timonthy G. Olson 6 24

Process Improvement Commandments for a Productive Development Environment Dr. Randall Jensen, Les Dupaix 1 25

Should Your Projects' Leaders Be on Springer? Paul Kimmerly 6 29

Project Management

A Governance Model for Incremental,

Concurrent, or Agile Projects

Dr. Alistair Cockburn 2 13

Earned Schedule: An Emerging Enhancement to

Earned Value Management

Walt Lipke, Kym Henderson 11 26

Practical Performance-Based Earned Value Paul J. Solomon 5 20

Social and Technical Reasons for Software Project Failures Capers Jones 6 4

Start With "Simple" Earned Value on All Your Projects Quentin W. Fleming,

Joel M. Koppelman

6 16

Statistical Methods Applied to EVM: The Next Frontier Walt Lipke 6 20

PSP/TSP Designing in UML With the Team Software Process David R. Webb, Ilya Lipkin,

Evgeniy Samurin-Shraer

3 14

Factors Affecting Personal Software Quality Dr. Mark C. Paulk 3 9

Maturing the PSP: Developing A Body of Knowledge and

Professional Certification for PSP-Trained Software Developers

Dr. Marsha Pomeroy-Huff 3 19

Using TSP With a Multi-Disciplined Project Managment System Timothy A. Chick 3 4

Requirements Experiences in Eliciting Security Requirements Dr. Nancy R. Mead 12 14

Interpreting Requirements in a He Said/She Said World Deb Jacobs 12 9

Requirements as Enablers for Software Assurance Dr. Seok-Won Lee, Robin A. Gandhi 12 20

Twelve Requirements Basics for Project Success Dr. Ralph R. Young 12 4

Quality Exposing Software Field Failures Michael F. Siok,

Clinton J. Whittaker, Dr. Jeff Tian

11 15

Finding and Fixing Problems Early: A Perspective-Based

Approach to Requirements and Design Inspections

Dr. Jeffrey Carver,

Dr. Forrest Schull,

Dr. Ioana Rus

12 26

Implementing Phase Containment Effectiveness

Metrics at Motorola

Ross Seider 11 12

Integrated Quality Assurance for Evolutionary,

Multi-Platform Software Development

Dr. Robert B.K. Dewar 11 Online

Software Recapitalization Economics David Lechner 11 21

Using Line of Balance to Track the Progress of

Fixing Trouble Spots

Eduardo Miranda 4 23

How to Relate Quality and Reuse in Evolving Systems Dr. Ronald J. Leach 4 27

Software Assurance Adapting Legacy Systems for DO-178B Certification Paul R. Hicks 8 27

Applying RAMS Principles to the Devlopment of a

Safety-Critical Java Specification

Dr. Kelvin Nilsen 2 8

Availability, Reliability, and Survivability: An Introduction and

Some Contractual Implications

Dr. Jack Murphy,

Dr. Thomas Ward Morgan

3 26

Increasing the Likelihood of Success of a

Software Assurance Program

Steven F. Mattern 9 26

The Qualification of Software Development Tools

From the DO-178B Certification Perspective

Dr. Andrew J. Kornecki,

Dr. Janusz Zalewski

4 19

When Computers Fly, It Has to Be Right: Using SPARK for

Flight Control of Small Unmanned Aerial Vehicles

Lt. Col. Ricky E. Sward, Ph.D.,

Lt. Col. Mark J. Gerken,

2nd Lt. Dan Casey

9 10

Software Security Assessing Information Security Risks in the

Software Development Life Cycle

Douglas A. Ashbaugh 9 21

Building Multilevel Secure Web Services-Based

Components for the Global Information Grid

Dylan McNamee,

CDR Scott Heller, Dave Huff

5 15

Security in the Software Lifecycle Joe Jarzombek,

Karen Mercedes Goertze

9 4

Systems Engineering A System View of Merging Software and Hardware Mike McNair 10 21

Systems of Systems 21st Century Processes for Acquiring 21st Century

Software-Intensive Systems of Systems

Dr. Barry Boehm, Jo Ann Lane 5 4

Tackling the Cost Challenges of System of Systems Arlene F. Minkiewicz 5 10

Testing Application and Evaluation of Built-In Test (BIT)

Techniques in Building Safe Systems

James A. Butler 9 15

Understanding the Logic of System Testing Dr. Yuri Chernak 3 22

Training Hard Skills Simulations: Tackling Defense Training

Challenges Through Interactive 3-D Solutions

Josie Simpson 2 Online

Knowledge: The Core Problem of Project Failure Timothy K. Perkins 6 13

Reuse

Secure From the Start: Designing and Implementing an

Assured National Security Enterprise

LTG Keith B. Alexander 7 10

FROM PREVIOUS PAGE

BACKTALK

December 2006 www.stsc.hill.af.mil 31

Acruel English teacher once made me
put together a poetry anthology,

which is a collection of my favorite
poems. Now, who would do that to a high
school kid? Anyhow, after all these many
years, I still have it, and came across it the
other day. Many of our great songs and
poems have military origins, or military
subjects.

The Charge of the Light Brigade is in my
anthology, so I can “Honor the charge
they made.”

That poem was based on a real battle
that should never have happened. The
order was sent for them to retreat, but, as
the poem says, Someone had blundered. They
received the word to charge, and they did.
This wouldn’t have happened in a net-cen-
tric world and we wouldn’t have great mis-
quotes like “Ours is not to reason why,
ours is but to do and die.” I heard that
many times when I was in the military, and
I hear it occasionally now. The poem actu-
ally reads Their’s not to reason why, Their’s but
to do and die.

I think I remember reading that this
verse is the most often misquoted one in

history, but I don’t know how one would
determine that.

My forced anthology has another, less
well known, humorous poem, that deals
with communication on the battlefield,
and the human nature of warfare. It is
called “Pershing at the Front,” and was
written by the humorous poet Arthur
Guiterman. World War I was fought in the
murk and the powder stench, and the wet and
the muck as well. Will net-centric warfare do
away with this colorful environment? Or
will it bring a shared awareness between
those with boots on the ground and those
who are two or three thousand miles away
remotely applying mass while sitting in an
air conditioned environment? As well as
being in my poetry anthology, this won-
derful poem can be found at <http://
holyjoe.org/poetry/guiter8.htm>. The
ending highlights another aspect of war
that just can’t be replaced by modern tech-
nology.

Now, instead of all the world wonder-
ing about the wild charge, all the world is
wondering about net-centric warfare, and
what it will do to the nature of war. I’m

wondering about what it will do to the
nature of song, poetry, and our society.

Now we are going to have to write
poems about being self-synchronized and
having shared awareness. And how about
this shared awareness stuff? If we would
have had shared awareness in the 1800s,
literature might be lacking other famous
prose.

What about let’s remember the Alamo,
and the great ballad that came from that
battle? What would have some shared
awareness done for that band of heroes?
Did Bowie and Travis know that rein-
forcements were not going to come?
Would it have mattered?

I fear that this change in warfare will
have a negative impact of the world of
poetry and song. We are going to have
fewer poems and songs about love and
brave deeds. Do we really want to pursue
this technology?

— Dennis Ludwig
dennis.ludwig@wpafb.af.mil

Net-Centric Warfare Changes Poetry

MONTHLY COLUMNS:
ISSUE COLUMN TITLE AUTHOR

Issue 1: January

Publisher:

BackTalk:

Issue 2: February

Issue 3: March

Issue 4: April

Issue 5: May

Issue 6: June

Issue 7: July

Issue 8: August

Issue 9: September Sponsor:

BackTalk:

Issue 11: November

Issue 12: December

Communication Communications: Continuous Improvement Required

Who's on Project Management?

Bob Zwitch

Tracy L. Stauder

Gary A. Petersen

A New Twist on Today's Technology

Sponsor: What Is Up and Coming

Publisher: Improving a Little at a Time

BackTalk: Tech-Neologism

Kevin Stamey

Elizabeth Starrett

Gary A. Petersen

PSP/TSP

Software Product Development: Transforming Art to Science

Why Isn't There an "I" in Team?

Terrence Clark

Dr. David A. Cook

Sponsor:

BackTalk:

Sponsor:

BackTalk:Alternate Mixes for CMMI

Transitioning to a New Model? First Consider Your Organizational Culture

Win the Battle, Lose the War

Randy B. Hill

Dr. David A. Cook

Transforming: Business, Security, Warfighting

Transformation: A Continuous Process

Education Is Key for Successful Transformation

Transform This

Bob Zwitch

Elizabeth Starrett

Gary A. Petersen

Sponsor:

BackTalk:Why Projects Fail

Why Do Projects Fail?

When Failure IS an Option ...

Kevin Stamey

Dr. David A. Cook

Sponsor:

BackTalk:Net-Centricity

The Future Battlespace and the Power of Immediate Decision Making

e-Dorado: The Lost Centric City of Information

Terrence Clark

Gary A. Petersen

Ada 2005

Sponsor:

Publisher:

BackTalk:

CrossTalk Co-Sponsors Invite Additional Government Organizations on Board

Ada Continues to Evolve

Ada: The Maginot Line of Languages

Randy B. Hill

Elizabeth Starrett

Dr. David A. Cook

Software Assurance

Software Assurance: Highlighting Changes Within Our Software Community of Practice

Ready, Fire, Aim!

Joe Jarzombek

Gary A. Petersen

Issue 10: October

Star Wars to Star Trek

Sponsor:

Publisher

BackTalk:

The Vision of What Can Be

Star Wars, Star Trek, and CrossTalk

Science Fiction, Science Fact

Diane E. Suchan

Elizabeth Starrett

Dr. David A. Cook

Management Basics

Sponsor:

Publisher:

BackTalk:

A Willingness to Keep Learning

Basic Articles

Deja Review

Kevin Stamey

Elizabeth Starrett

Gary A. Petersen

Requirements Engineering

Sponsor:

BackTalk:

Requirements Management Is Required

Net-Centric Warfare Changes Poetry

Randy B. Hill

Dennis Ludwig

Sponsor: Are Your Communication Skills Advancing?

Sponsor:

Publisher:

BackTalk:

CrossTalk / 517 SMXS/MXDEA
6022 Fir AVE

BLDG 1238

Hill AFB, UT 84056-5820

PRSRT STD

U.S. POSTAGE PAID

Albuquerque, NM

Permit 737

CrossTalk is

co-sponsored by the

following organizations:

	Front Cover
	Table of Contents
	From the Sponsor
	Requirements Engineering
	Twelve Requirements Basics for Project Success
	Interpreting Requirements in a He Said/She Said World
	Experiences in Eliciting Security Requirements
	Requirements as Enablers for Software Assurance

	Software Engineering Technology
	Finding and Fixing Problems Early:A Perspective-BasedApproach to Requirements and Design Inspections

	Coming Events
	Letter to the Editor
	2007 Systems & Software Technology Conference
	2006 Article Index
	BackTalk
	Back Cover

